

Annex J - Drainage Strategy and Drainage Plans

September 2022

AN SUIDHE SUBSTATION

ANNEX J DRAINAGE IMPACT ASSESSMENT

JUNE 2022

Prepared by Arcus Consultancy Services

7th Floor 144 West George Street Glasgow G2 2HG

T +44 (0)1904 715 470 I E info@arcusconsulting.co.uk w www.arcusconsulting.co.uk

Registered in England & Wales No. 5644976

TABLE OF CONTENTS

1	INTRODUCTION			
	1.1	Background	2	
	1.2	Site Context	2	
	1.3	The Proposed Development Infrastructure	3	
2	SURF	ACE WATER DESIGN CONDITIONS	3	
	2.1	Surface Water Discharge Options	3	
	2.2	Estimated Infiltration Rate	4	
	2.3	Greenfield Run-off rates	4	
 INTRODUCTION		Return Period and Climate Change Allowance	4	
	2.5	Discharge to Watercourse	5	
3	SURF#	ACE WATER DRAINAGE DESIGN	5	
	3.1	Proposed Surface Water Drainage Scheme	5	
	3.2	Water Quality	6	
	3.3	Construction Phase	7	
4	FOUL	WATER DRAINAGE	7	
5	LONG	TERM MANAGEMENT AND TIMESCALES	8	
	5.1	Long Term Management	8	
	5.2	Timescales	9	
6	CONC	LUSION	9	
APPEN	IDIX A	– SITE LAYOUT	8	
APPEN	IDIX B	– MICRODRAINAGE OUTPUTS	9	
APPEN	IDIX C	– ICP SUDS OUTPUTS	0	

Document Control

	Date	Version	Role		Print Name	Signature
Author	24/03/2022	1-0	Graduate Hydrologist (Arcus)	BSc (Hons) MSc GradCIWEM	Tom Cusworth	10
Check & Review	29/03/2022	1-0	Senior Hydrologist (Arcus)	BA (Hons) MCIWEM	Reagan Duff	Rauff
Author	31/03/2022	1-1	Graduate Hydrologist (Arcus)	BSc (Hons) MSc GradCIWEM	Tom Cusworth	10
Check & Review	31/03/2022	1-1	Senior Hydrologist (Arcus)	BA (Hons) MCIWEM	Reagan Duff	Rauff
Author	06/04/2022	1-2	Graduate Hydrologist (Arcus)	BSc (Hons) MSc GradCIWEM	Tom Cusworth	10
Check & Review	06/04/2022	1-2	Senior Hydrologist (Arcus)	BA (Hons) MCIWEM	Reagan Duff	Elluff-
Author	06/04/2022	1-3	Graduate Hydrologist (Arcus)	BSc (Hons) MSc GradCIWEM	Tom Cusworth	10

	Date	Version	Role		Print Name	Signature
Author	11/05/2022	2-0	Graduate Hydrologist (Arcus)	BSc (Hons) MSc GradCIWEM	Tom Cusworth	10
Check & Review	11/05/2022	1-2	Senior Hydrologist (Arcus)	BA (Hons) MCIWEM	Reagan Duff	Elluff
Author	12/05/2022	2-1	Graduate Hydrologist (Arcus)	BSc (Hons) MSc GradCIWEM	Tom Cusworth	10

1 INTRODUCTION

1.1 Background

This Drainage Impact Assessment (DIA) has been produced in support of a planning application for the construction of a 275 kV substation (the Proposed Development) on greenfield land south west of Inveraray (the Site) in the vicinity of the existing An Suidhe substation.

The Proposed Development is accompanied by Associated Development, a permanent overhead line (OHL) Tie in comprising of 6 no. towers and access tracks. This is not included within this DIA given the absence of impermeable surfaces associated with it, therefore this DIA assesses only the Proposed Development.

This DIA has been prepared by Arcus Consultancy Services Ltd (Arcus), on behalf of SSEN Transmission (the Applicant) to satisfy the following requirements:

- Scottish Government, Planning Advice Note 61: Planning and Sustainable Urban Drainage Systems¹;
- Scottish Government, Planning Advice Note 79: Planning Advice Note 79: Water and Drainage²;
- Scottish Environmental Protection Agency (SEPA), Technical Flood Risk Guidance for Stakeholders³;
- Scottish Water, Sewers for Scotland 4th Edition⁴;
- Construction Industry Research and Information Association (CIRIA), The Sustainable Urban Drainage Systems (SuDS) Manual (C753)⁵; and
- Argyll and Bute Council (ABC), Flood Risk Management Policy and Strategy⁶.

The Proposed Development Layout Plan can be found in **Appendix A** of this DIA.

1.2 Site Context

The Site comprises an area of approximately 8 hectares (ha) and is located approximately 500 metres (m) north of the existing An Suidhe Substation and approximately 4 kilometres (km) south west of Inveraray at National Grid Reference (NGR) 204861, 705524. The Site is approximately 300 m west of Douglas Water and upslope of the Douglas Water river valley and the existing substation.

The Proposed Development is in an area of commercial forestry with low conservation value as well as an area of semi-natural broadleaved woodland with higher ecological importance. The Proposed Development is accessed from the A83, utilising existing forestry tracks.

Ordnance Survey (OS) Terrain 5 data indicates Site elevations are in the approximate range of 165 to 190 m Above Ordnance Datum (AOD) with topography falling from a high point in the south to the lower elevations in the north of the Site, as shown by **Plate 1**.

- https://www.gov.scot/publications/planning-advice-note-pan-79-water-drainage/
- ³ SEPA, Technical Flood Risk Guidance for Stakeholders (2019). [Online]. Available at: https://www.sepa.org.uk/environment/land/planning/guidance-and-advice-notes/
- ⁴ Scottish Water, Sewers for Scotland (2018). [Online]. Available at: https://www.scottishwater.co.uk/-

information/SewersForScotlandv4.pdf (Accessed 30/09/2021) ⁵ CIRIA, The SuDS Manual (C753) (2015). [Online]. Available at:

https://www.ciria.org/AsiCommon/Controls/BSA/Downloader.aspx

⁶ Argyll and Bute Council Flood Risk Management Policy and Strategy (2015). [Online]. Available at:

Flood_Risk_Management_Policy_and_Strategy%20-%20Final%20draft%20110315.pdf (argyll-bute.gov.uk)

¹ Scottish Government, Planning Advice Note 61: Planning and Sustainable Urban Drainage Systems (2001). [Online]. Available at: <u>https://www.gov.scot/publications/pan-61-sustainable-urban-drainage-systems/</u>

² Scottish Government, Planning Advice note 79: Water and Drainage (2006). [Online]. Available at:

[/]media/ScottishWater/Document-Hub/Business-and-Developers/Connecting-to-our-network/All-connections-

Plate 1: Site Location and Elevations

A British Geological Survey (BGS) borehole scan⁷ located approximately 130 m north west of the Site indicates there is peat located at depths of 0.3 m before transitioning to sandy and gravelly clay strata to depths of 2.9 m below ground level (bgl). Further details on peat depths associated are available in **Annex N: Peat Management Plan** of the An Suidhe Substation Environmental Appraisal.

1.3 The Proposed Development Infrastructure

The Proposed Development will be constructed on top of the substation platform which will comprise a 1 m sub base covering an area of approximately 13,000 m² which will comprise free draining fill material and is therefore designed to be free draining.

The proposed temporary and permanent access tracks will comprise of permeable materials (e.g., Type 2 aggregate) and will be free draining and are therefore excluded from the total impermeable areas. The Associated Development is not considered to have any significant impermeable materials and therefore has not been considered within this appraisal. Impermeable areas associated with the Proposed Development are therefore limited to the buildings storing the diesel generator, feeder building, telecoms, mess and store room, LVAC room, battery room, switch room and the substation electrical infrastructure. The impermeable elements will create a total impermeable area of approximately 0.2 ha.

2 SURFACE WATER DESIGN CONDITIONS

In accordance with the SuDS Manual, an evaluation has been undertaken to determine the most appropriate option to dispose of surface water from the Proposed Development.

2.1 Surface Water Discharge Options

The Proposed Development will be unmanned with infrequent maintenance visits and therefore there will be no demand for water re-use.

⁷ British Geological Survey, Borehole Scans, BGS ID 694940. [Online]. Available at: <u>http://scans.bgs.ac.uk/sobi_scans/boreholes/694940/images/16697028.html</u>

Consultations⁸ with ABC have confirmed that infiltration testing is not required at the Planning Application submission stage and that the potential for infiltration drainage will be assessed through an estimated infiltration rate sought via the SuDS Manual.

2.2 Estimated Infiltration Rate

An assumed infiltration rate has been calculated based on the subsoils from the BGS borehole records located approximately 130 m south west of the Site. The borehole record shows sandy and gravelly clay strata to depths of 2.9 m bgl.

Table 25.1 of the SuDS Manual outlines estimated infiltration rates based on the Infiltration Drainage – Manual of Good Practice⁹. Table 25.1 indicates clay media has a typical maximum infiltration rate of an infiltration rate of 0.0000018 metres per hour (m/h).

The SuDS Manual outlines that where rates are less than 0.000001 m/h infiltration as a means of disposal of significant volumes of run-off may not be appropriate.

Acknowledging the limited infiltration capacity of the underlying soils infiltration as a means of drainage is assessed as unfeasible and surface water will be disposed of by controlled discharge to a nearby watercourse.

2.3 Greenfield Run-off rates

Greenfield run-off rates for the 0.2 ha of impermeable area, have been calculated using the ICP SuDS method¹⁰ via Micro Drainage Software with rates shown in **Table 1** below and **Appendix B** of this DIA.

Q_{BAR} will be utilised as the outflow rate.

The application of this approach leads to the run-off from the Site to be attenuated and discharged to the greenfield run-off rate of 4.5 l/s in up to the 200-year return period, with appropriate climate change allowances.

Return Period	Q (I/s)
Q _{BAR}	4.5
1	2.8
30	8.5
100	11.2
200	12.7

Table 1: Site Run-off Flow Rates (taken from Micro Drainage)

2.4 Return Period and Climate Change Allowance

In accordance with Map 1 of SEPA's climate change (+CC) allowances¹¹ a 46% allowance has been incorporated into the drainage design (+46% CC).

Attenuation is required in up to and including the 1:30-year (+CC) event with exceedance events up to the 1:200-year (+CC) event to be considered for offsite flooding.

 ⁸ Email and telephone communications between D. Moore (ABC) and R. Duff (Arcus) January 2022.
 ⁹ R, Bettess. Infiltration Drainage – Manual of Good Practice (1996). CIRIA R156.

 ¹⁰ National SuDS Working Group, Interim Code of Practice for Sustainable Drainage Systems (2004). [Online]. Available at: https://www.susdrain.org/files/resources/other-guidance/nswg icop for suds 0704.pdf
 ¹¹ SEPA, Climate Change Allowances for Flood Risk Assessment in Land Use Planning (2019). [Online]. Available at:

^{&#}x27;' SEPA, Climate Change Allowances for Flood Risk Assessment in Land Use Planning (2019). [Online]. Available at: <u>https://www.sepa.org.uk/media/426913/lups_cc1.pdf</u>

2.5 Discharge to Watercourse

The UK CEH (FEH) web map¹² indicates that the Tom an Buachaillean watercourse is served by a catchment of 0.5 km² as shown in **Plate 2**. This watercourse is located approximately 120 m north west of the Site. The watercourse flows in a northerly direction until it joins the Douglas Water approximately 300 m north east of the Site.

Plate 2: Receiving Watercourse Catchment Extents

3 SURFACE WATER DRAINAGE DESIGN

The measures outlined in the following Sections will be implemented by the Applicant's chosen Contractor to ensure that greenfield run-off rates are maintained during the construction and operational phases of the Proposed Development.

Should the drainage measures or final locations of infrastructure differ to what is outlined within this document, then the final detailed drainage design will be provided to ABC under an agreed pre-construction condition.

3.1 Proposed Surface Water Drainage Scheme

The substation will be underlain by a permeable platform underlain by capping to depths of 1 m, with an area of 1.3 ha. The free draining nature of the platform enables the platform to be utilised for surface water attenuation at the location of the Proposed Development.

The area of the hardstanding equates to 0.2 ha, and therefore, the capping layer will have an area available for attenuation of 1.1 ha. These dimensions were inputted into Micro Drainage software as a cellular storage unit, in order to represent the porosity of the proposed platform.

¹² UK Centre for Ecology and Hydrology, Flood Estimation Handbook. [Online]. Available at: <u>https://fehweb.ceh.ac.uk/GB/map</u>

The porosity of a capping layer is defined by the type of fill material applied, with typical porosity values extracted from Micro Drainage shown in **Plate 3**. The 6F2-type aggregate is assessed to have a porosity value of 0.2 (*i.e.*, the lowest range within the graded gravel category).

Plate 3 – Typical Porosity Values (Taken from Micro Drainage)

Material	Porosity
Clean Stone	0.4 - 0.5
Uniform Gravel	0.3 - 0.4
Graded Sand or Gravel	0.2 - 0.3

The outfall to the open land drain is located within the extents of the Site and third-party access agreements that are required for the route to the discharge point will be sought prior to construction.

The outflow of the platform attenuation to Tom an Buachaillean will be controlled by a orifice and discharge to the watercourse to the west at 4.5 l/s.

The critical storm event in up to a 1:200-year (+46% CC) event is shown in **Plate 4** with the designed feature able to attenuate surface water flows without overtopping.

Details of critical events for the 1:200-year (+46% CC) event can be found in **Appendix** C.

Plate 4: Network 1:200-Year (+CC) Critical Storm Event (Taken from Micro Drainage)

Storm Event	Rain (mm/hr)	Time to Vol Peak (mins)	Max Water Level (m)	Max Depth (m)	Flooded Volume (m ²)	Max Control (l/s)	Discharge Volume (m*)	Max Filtration (I/s)	Σ Max Outflow (I/s)	Maximum Volume (m²)	Status	
960 min Winter	12.941	710	175.967	0.967	0.0	4.3	345.0	0.0	4.3	212.7	Flood Risk	

3.2 Water Quality

The Proposed Development will involve the construction and operation of a substation involving less than 300 traffic movements per day. Table 26.2 *Pollution hazard indices for different land use classifications* of the SuDS Manual identifies that the Proposed Development has a Pollution Hazard Level of Low, taken from the 'Low Traffic Roads e.g., residential roads and general access roads, <300 traffic movements/day' scenario.

 Table 2
 outlines
 the
 Proposed
 Development
 includes
 land
 uses
 which
 have
 the
 following
 Simple
 Index Approach
 (SIA)
 indices.

Land Use	Pollution Level Hazard	Total Suspended Soils	Metal	Hydrocarbons
Commercial/Industrial Roofing: Low Potential for Metal Leaching	Low	0.3	0.4	0.4

 Table 2: Pollution Hazard Indices for Land Use Classifications

A SIA has been developed on behalf of the CIRIA to support the implementation of the water quality management design methods set out in the SuDS Manual, with appropriate cross referencing to the relevant 'Design Conditions' in the tool.

The Proposed Development has been categorised as 'Commercial/Industrial roofing: Low potential for metal leaching' within the SIA tool.

The substation platform has been represented using a permeable pavement which does not utilise infiltration. The outputs of the SIA outline that the permeable paving unit representing the platform will be sufficient to effectively mitigate any suspended solids, metals and hydrocarbons held within surface water at the Proposed Development prior to

discharging into the receiving watercourse under expected conditions i.e., in the absence of large hydrocarbon spills.

The SIA outputs as shown in **Table 3**, demonstrate that the combined Pollution Mitigation Indices for the run-off area are met by the utilisation of the substation platform as a surface water attenuation structure.

	Total Suspended Solids	Metals	Hydrocarbons
Pollution Hazard Indices	0.3	0.4	0.5
Permeable Pavement	0.7	0.6	0.7

Table 3: SIA outputs for Low Pollution Hazard Level scenario

The outputs of the SIA tool indicate that the SuDS network has the required treatment potential in relation to the potential pollution hazard of the Proposed Development in the absence of significant spillages of hydrocarbons or other pollutants.

3.3 Construction Phase

The drainage measures implemented within the temporary works area (TWA) will be the responsibility of the appointed contractor. This area will comprise aggregate underlain by a permeable membrane. The contractor will implement temporary construction drainage measures in accordance with best practice guidance which will prevent any significant runoff in relation to the compaction of soils during construction (e.g., spill kits, drip trays, plant nappies, designated refuelling points, emergency response plans). Following the construction of the Development, the TWA will be decommissioned, with underlying ground reinstated to its original condition.

Therefore, the TWA will not contribute to a significant increase in surface water run-off rates and need not be served by a formal drainage network.

The nature of hydrological incidents that could result from construction activities will be mitigated through the implementation of construction phase SuDS and the application of industry good practice as per CIRIA Guidance (C741)¹³.

To prevent any sediment increase in associated run-off during the construction phase mitigation measures (e.g., spill kits, bunds, drip trays, plant nappies, designated refuelling points and emergency response plans) will effectively prevent sediment entering surrounding watercourses.

4 FOUL WATER DRAINAGE

During the construction phase a temporary a 'porta-loo' facility will be on-site, with waste being stored, managed and carried off-site by a licensed waste management courier. A septic tank will be installed to provide foul sewage management throughout the operational phase of the Proposed Development. The septic tank will be managed, inspected and drained by a licensed courier who will then dispose of the waste off-site. The septic tank will be registered with SEPA through the private sewage registration system.

¹³ The Construction Industry Research and information Association (CIRIA), (2015), Environmental Good Practice on Site Guide (C741), CIRIA: London.

5 LONG TERM MANAGEMENT AND TIMESCALES

5.1 Long Term Management

It will be the responsibility of SSEN Transmission to maintain effective drainage measures and rectify drainage measures that are not functioning adequately. A nominated person will also have responsibility for reporting on the functionality of drainage measures.

Where impermeable areas remain through the lifetime of the Proposed Development, the SuDS measures serving these areas will be checked on a regular basis. Should drainage measures require dredging or unblocking, this will be undertaken as soon as practicable by a local contractor engaged by SSEN Transmission

It is not anticipated that ABC or Scottish Water will adopt the new drainage network. Therefore, it will be the responsibility of SSEN Transmission to maintain effective drainage measures and rectify drainage measures that are not functioning adequately.

An outline management / maintenance plan is provided in **Table 4**. Pervious pavements would have similar maintenance characteristics to the platform due to the material filling used. Therefore, pervious pavements have been used to represent the maintenance of the platform.

Maintenance schedule	Required action	Typical frequency
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturers recommendations - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
Occasional Maintenance	Stabilise and mow contributing and adjacent areas	As required
	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
Remedial actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging

Table 4: Outline Long-term Maintenance schedule for the Pervious Paving¹⁴

¹⁴ Based on Table 20.15 - Operation and maintenance requirements for pervious pavements of the SuDS Manual.

Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth - if required, take remedial action	Three-monthly, 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

5.2 Timescales

Drainage measures outlined within this DIA should be implemented as soon as practical by the Applicant's Contractor but as a minimum before the construction of any impermeable surfaces which are proposed to drain into the approved drainage system.

Measures such as drainage pipes should be installed at the same time as the excavations, or as soon as practicable thereafter.

6 CONCLUSION

This DIA provides details on the volume of storage required to attenuate surface water run-off from the construction of the Proposed Development. The proposed OHL works have not been assessed in this DIA.

The Proposed Development will involve the installation of approximately 0.2 ha of impermeable elements.

The Proposed Development will be underlain by a free draining platform which will be utilised for surface water attention.

The proposed attenuation capacity of the platform detailed within this DIA is shown to store surface water without surcharge during a 1:200-year (+46 % CC) event and discharge to the nearest watercourse at a 4.5 l/s.

APPENDIX A – SITE LAYOUT

APPENDIX B – MICRODRAINAGE OUTPUTS

APPENDIX C – ICP SUDS OUTPUTS

4 5

8

10

11

12

15	16	
OTES:-		
ALL DIMENSIONS ARE IN MET REPRODUCED BY PERMISSION HER MAJESTY'S STATIONARY DATABASE 2021. ALL RIGHTS NUMBER 0100022432.	RES (m) UNLESS NOTED OTHERWISE. N OF ORDNANCE SURVEY ON BEHALF OF OFFICE. © CROWN COPYRIGHT AND RESERVED. ORDNANCE SURVEY LICENC	E
EGEND:-		
PROPOSAL OF APPL	ICATION NOTICE BOUNDARY	
NEW LOCHGILPHEA (FROM BALFOUR BE	D TO CROSSAIG OHL ACCESS TRACKS EATTY)	
NEW LOCHGILPHEA	D TO CROSSAIG OVERHEAD LINE	
PROPOSED OHL ALI	GNMENT	
EXISTING OVERHEAD	D LINE	
PROPOSED TEMPOR	RARY WORKS AREA	
PROPOSED PERMAN	NENT ACCESS TRACK	
PROPOSED TEMPOR	RARY ACCESS TRACK	
33kV INTERCONNEC	TOR CABLE ROUTE	
Gleninore	Portinnisherrich	
Ardfern Ford	Creag	

AN SUIDHE KEY LOCATION PLAN N.T.S.

DRAFT

0G	SP	09 04 2022		TIVE AN S S TRACKS	SUIDHE S TATION LAYOUT		
0F	SP	31.03.2022	INDICA ACCES 33kV C	TIVE AN S S TRACKS ABLE ROL	SUIDHE S JTE ADDED		
0E	SP	25.02.2022	INDICA SITE L	TIVE AN S OCATION I	SUIDHE PLAN		J
0D	SP	20.01.2022	INDICA SITE L	TIVE AN S CATION I	SUIDHE PLAN		
00	SP	07.01.2022	INDICA SITE LI	TIVE AN S CATION I	SUIDHE PLAN		
0B	SP	06.01.2022	INDICA SITE LI	TIVE AN S OCATION I	SUIDHE PLAN		
0A	SP	15.12.2021	INDICA SITE LI	TIVE AN S DCATION I	SUIDHE PLAN		
	Scottish & Southern Electricity Networks						
	SS Pei	E Inveralmond rth, PH1 3AQ, U	House, 20 K	0 Dunkeld R www.sse.	load com		
Proje ARG	ct: (ll and k	(INTYRE 275	kV SUB	STATIONS			L
Proje	ct Number:	LT00028	8	Location:	ARGYLL		
ARG	YLL AND K CATIVE AN	(INTYRE 275 I-SUIDHE SIT	kV SUB TE LOCA	STATIONS	S N		

Drawing Status: FOR INFORMATION Drawn: SP Scale: 1:5000 Date: 08.04.2022 Checked: Approved: File Name: LT288_ANSU_0802_0005_00_0G.dwg Sheet No: Revision No:

16

15

13

14

Arcus Consulting		Page 1
1C Swinegate Ct East		
3 Swinegate		4
York YO1 8AJ		Micco
Date 11/05/2022 12:05	Designed by Reagand	Desinado
File MD_Outputs.SRCX	Checked by	Diamage
XP Solutions	Source Control 2014.1.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 200 SAAR (mm) 2333 Urban 0.000 Area (ha) 0.200 Soil 0.500 Region Number Region 1

Results 1/s

QBAR Rural 4.5 QBAR Urban 4.5 Q200 years 12.7 Q1 year 3.8 Q30 years 8.5 Q100 years 11.2

©1982-2014 XP Solutions

Arcus Consulting		Page 1
1C Swinegate Ct East		
3 Swinegate		Le l
York YO1 8AJ		Micco
Date 11/05/2022 16:16	Designed by Reagand	Desinado
File	Checked by	Diamage
XP Solutions	Source Control 2014.1.1	

Summary of Results for 200 year Return Period (+46%)

Half Drain Time : 2226 minutes.

	Stori Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	175 027	0 027	0 0	0 2	0 2	598	ОК
30	min	Summer	175 036	0 036	0.0	0.2	0.2	78 8	0 K
60	min	Summer	175.047	0.047	0.0	0.6	0.6	103.6	0 K
120	min	Summer	175.062	0.062	0.0	0.8	0.8	135.4	0 K
180	min	Summer	175.072	0.072	0.0	1.0	1.0	157.6	0 K
240	min	Summer	175.080	0.080	0.0	1.1	1.1	175.1	0 K
360	min	Summer	175.092	0.092	0.0	1.2	1.2	202.3	ΟK
480	min :	Summer	175.101	0.101	0.0	1.2	1.2	223.1	ОК
600	min :	Summer	175.109	0.109	0.0	1.3	1.3	239.8	ОК
720	min :	Summer	175.115	0.115	0.0	1.3	1.3	253.7	ОК
960	min :	Summer	175.122	0.122	0.0	1.4	1.4	268.0	ОК
1440	min :	Summer	175.129	0.129	0.0	1.4	1.4	284.4	ОК
2160	min :	Summer	175.136	0.136	0.0	1.5	1.5	299.6	ОК
2880	min :	Summer	175.141	0.141	0.0	1.5	1.5	309.5	ОК
4320	min :	Summer	175.149	0.149	0.0	1.6	1.6	327.9	ΟK
5760	min :	Summer	175.153	0.153	0.0	1.6	1.6	336.7	ОК
7200	min :	Summer	175.155	0.155	0.0	1.6	1.6	340.2	ΟK
8640	min :	Summer	175.155	0.155	0.0	1.6	1.6	340.4	ΟK

	Storr Event	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min S	Summer	159.816	0.0	15.0	27	
30	min S	Summer	105.584	0.0	23.7	42	
60	min S	Summer	69.754	0.0	54.5	72	
120	min S	Summer	46.084	0.0	78.1	130	
180	min S	Summer	36.161	0.0	95.2	190	
240	min S	Summer	30.445	0.0	108.7	248	
360	min S	Summer	23.890	0.0	129.6	368	
480	min S	Summer	20.114	0.0	144.9	486	
600	min S	Summer	17.601	0.0	156.5	606	
720	min S	Summer	15.783	0.0	165.3	724	
960	min S	Summer	12.941	0.0	172.7	962	
1440	min S	Summer	9.783	0.0	175.6	1348	
2160	min S	Summer	7.395	0.0	312.8	1692	
2880	min S	Summer	6.064	0.0	329.6	2076	
4320	min S	Summer	4.695	0.0	336.6	2900	
5760	min S	Summer	3.916	0.0	517.3	3744	
7200	min S	Summer	3.401	0.0	554.2	4544	
8640	min S	Summer	3.032	0.0	579.4	5368	
		©19	82-2014	XP Sol	utions		

Arcus Consulting		Page 2
1C Swinegate Ct East		
3 Swinegate		4
York YO1 8AJ		Micco
Date 11/05/2022 16:16	Designed by Reagand	Desinado
File	Checked by	Diamage
XP Solutions	Source Control 2014.1.1	

	<u>Summ</u>	nary	of Resu	lts f	<u>or 200 year</u>	Return	Period	(+46응)	
	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
10080	min Sı	ummer	175.154	0.154	0.0	1.6	1.6	338.5	ОК
15	min W:	inter	175.030	0.030	0.0	0.3	0.3	66.9	ОК
30	min W:	inter	175.040	0.040	0.0	0.4	0.4	88.2	ОК
60	min W:	inter	175.053	0.053	0.0	0.7	0.7	116.0	ОК
120	min W:	inter	175.069	0.069	0.0	0.9	0.9	151.6	ОК
180	min W:	inter	175.080	0.080	0.0	1.1	1.1	176.7	ΟK
240	min W:	inter	175.089	0.089	0.0	1.1	1.1	196.5	ΟK
360	min W:	inter	175.103	0.103	0.0	1.3	1.3	227.2	ΟK
480	min W:	inter	175.114	0.114	0.0	1.3	1.3	250.8	ΟK
600	min W:	inter	175.123	0.123	0.0	1.4	1.4	269.8	ΟK
720	min W:	inter	175.130	0.130	0.0	1.4	1.4	285.7	ΟK
960	min W:	inter	175.137	0.137	0.0	1.5	1.5	302.4	ΟK
1440	min W:	inter	175.147	0.147	0.0	1.6	1.6	322.5	ΟK
2160	min W:	inter	175.153	0.153	0.0	1.6	1.6	336.5	ΟK
2880	min W:	inter	175.157	0.157	0.0	1.6	1.6	345.9	ΟK
4320	min W:	inter	175.164	0.164	0.0	1.7	1.7	361.4	ΟK
5760	min W:	inter	175.166	0.166	0.0	1.7	1.7	365.7	ОК
7200	min W:	inter	175.166	0.166	0.0	1.7	1.7	364.1	ΟK
8640	min W:	inter	175.163	0.163	0.0	1.7	1.7	359.2	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
10080	min	Summer	2.751	0.0	591.6	6160	
15	min	Winter	159.816	0.0	18.4	27	
30	min	Winter	105.584	0.0	27.7	41	
60	min	Winter	69.754	0.0	63.4	70	
120	min	Winter	46.084	0.0	90.1	128	
180	min	Winter	36.161	0.0	109.0	186	
240	min	Winter	30.445	0.0	124.0	244	
360	min	Winter	23.890	0.0	146.4	362	
480	min	Winter	20.114	0.0	162.4	478	
600	min	Winter	17.601	0.0	174.0	594	
720	min	Winter	15.783	0.0	182.4	708	
960	min	Winter	12.941	0.0	188.7	936	
1440	min	Winter	9.783	0.0	191.4	1374	
2160	min	Winter	7.395	0.0	349.3	1760	
2880	min	Winter	6.064	0.0	365.4	2200	
4320	min	Winter	4.695	0.0	368.8	3124	
5760	min	Winter	3.916	0.0	580.9	4040	
7200	min	Winter	3.401	0.0	620.9	4904	
8640	min	Winter	3.032	0.0	647.9	5792	
 		©19	82-2014	XP Sol	utions		
		ST)	02 2014	731 DOI			

Arcus Consulting							Page 3	
1C Swinegate Ct East								
3 Swinegate							4	
York YO1 8AJ							Mission	~
Date 11/05/2022 16:16		Des	signed by	/ Reagand				
File		Che	ecked by				Urainagi	2
XP Solutions		Soi	irce Cont	crol 2014	.1.1			_
Summary	of Result	ts for	<u>200 year</u>	Return B	Period	(+46%)		
Storm	Max N	Max	Max	Max Control N	Max	Max	Status	
Event	(m)	eptn ini (m)	(1/s)	(1/s)	(1/s)	(m ³)		
	(/	、 <i>i</i>	(_/ _/	(_/ -/	(_/ _/	、 <i>,</i>		
10080 min Winter	175.160 0	.160	0.0	1.6	1.6	352.4	O K	
	Storm	Rain	Flooded	Discharge	Time-Pe	ak		
	Event	(mm/h)	r) Volume	Volume	(mins)			
			(m³)	(m³)				
10080	min Winto	r 2.7	51 0 0	658 O	66	56		
10000	MIII WIIICC	± 2.1	0.0	000.0	00	50		
	©1	982-202	l4 XP Sol	lutions				

Arcus Consulting			Page 4
1C Swinegate Ct East			
3 Swinegate			4
York YO1 8AJ			m
Date 11/05/2022 16:16	Designed by Re	eagand	MICrO
File	Checked by		Drainage
XP Solutions	Source Control	1 2014 1 1	
	504100 00110101		
Ra	infall Details		
Deinfell Med	- 1	ו ז כי כי	
Return Period (vear	el s)	200	
Site Locatio	on GB 204900 7057	50 NN 04900 05750	
C (1kr	m)	-0.017	
D1 (1kr	m)	0.492	
D2 (1ki D3 (1ki	m)	0.400	
E (1kr	m)	0.252	
F (1ki	m)	2.532	
Summer Storn	ms	Yes	
winter Stori Cv (Summe	ns r)	1es 0.750	
Cv (Winte:	r)	0.840	
Shortest Storm (min:	s)	15	
Longest Storm (min:	s)	10080	
	6	+40	
Tir	<u>ne Area Diagran</u>	<u>n</u>	
Tota	al Area (ha) 0.20	0	
Time (mins) Area T	ime (mins) Area	Time (mins) Area	
From: TO: (na) Fr	om: To: (na)	From: To: (na)	
0 4 0.067	4 8 0.067	8 12 0.067	
<u>∩1082</u> -	-2014 XP Solut	ions	
S1902			

Arcus Consulting		Page 5					
1C Swinegate Ct East 3 Swinegate		4					
York YO1 8AJ		Micco					
Date 11/05/2022 16:16	Designed by Reagand	Desinado					
File	Checked by	Diamaye					
XP Solutions	Source Control 2014.1.1						
<u>Model Details</u> Storage is Online Cover Level (m) 176.000							
<u>Cellula</u>	<u>Cellular Storage Structure</u>						
Invert Level (m) 175.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.20 Infiltration Coefficient Side (m/hr) 0.00000							
Depth (m) Area (m²) Inf. Are	ea (m²) Depth (m) Area (m²) Inf. Area (m	. ²)					
0.000 11000.0	0.0 1.000 11000.0 0	.0					

Orifice Outflow Control

Diameter (m) 0.046 Discharge Coefficient 0.600 Invert Level (m) 175.000

©1982-2014 XP Solutions