

APPENDIX 12.2: DRAINAGE IMPACT ASSESSMENT

LT379 Greens 400kV Substation

Drainage Impact Assessment

GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0002

engineering solutions, delivering results

CONTROL SHEET

PREPARED BY:	Fairhurst Group LLP
	300 Bath Street
	Glasgow, G2 4JR
	+44 141 204 8800
	https://www.fairhurst.co.uk
CLIENT:	Siemens Energy BAM Joint Venture (SEBAM)
PROJECT NAME:	LT379 Greens 400kV Substation
REPORT TITLE:	Drainage Impact Assessment
PROJECT NUMBER:	156918ASTI3W
DOCUMENT NUMBER:	GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0002
STATUS:	S5

		Name	Signature	Date
pproval Jule	Prepared by	Rhea Duncan	[Signed copy held on file]	21/08/2024
lssue & Approval Schedule	Checked by	Roger Minto	[Signed copy held on file]	21/08/2024
<u>s</u>	Approved by	Roger Minto	[Signed copy held on file]	21/08/2024

Rev.		Date	Status	Description	Signature	
_	P01 21/08/24			Ву	RD	
Record		21/08/24	S5	ISSUED TO SSE	Checked	RM
Revision R					Approved	RM
	P02 01/11/24 S5		S5	ISSUED TO SSE	Ву	RD
		01/11/24			Checked	RM
		-	Approved	RM		

This document has been prepared in accordance with the Fairhurst Quality and Environmental Management System and in accordance with the instructions of the client, BAM Nuttall Ltd, for the client's sole and specific use. Any other persons who use any information contained herein do so at their own risk. Any information provided by third parties and referred to herein has not been checked or verified by Fairhurst unless otherwise expressly stated within this report.

Unless otherwise agreed in writing, all intellectual property rights in, or arising out of, or in connection with this report, are owned by Fairhurst. The client named above has a licence to copy and use this report only for the purposes for which it was provided. The licence to use and copy this report is subject to other terms and conditions agreed between Fairhurst and the client.

Fairhurst is the trading name of Fairhurst Group LLP, a limited liability partnership registered in Scotland with the registered number SO307306 and registered office at 43 George Street, Edinburgh EH2 2HT.

Contents

1.0	INTRODUCTION	3
2.0	EXISTING SITE DESCRIPTION	6
3.0	EXISTING WATERCOURSES AND DRAINAGE FEATURES	8
4.0	PROPOSED DEVELOPMENT	9
5.0	PROPOSED DRAINAGE	12
6.0	DRAINAGE STRATEGY: PLATFORM	15
7.0	PROPOSED DRAINAGE: SUDS & ATTENUATION	16
8.0	DRAINAGE STRATEGY: TEMPORARY DRAINAGE	
9.0	DRAINAGE STRATEGY: CHANNEL REALIGNMENTS	23
10.0	DRAINAGE STRATEGY: GROUNDWATER	25
11.0	DRAINAGE STRATEGY: BURN OF GREENS CROSSING	26
12.0	DRAINAGE STRATEGY: FOUL WATER MANAGEMENT	
13.0	MAINTENANCE REQUIREMENTS	28
14.0	CONCLUSION	31

Tables

Table 1: CIRIA C753: The SuDS Manual Outfall Hierarchy Outfall Options	14
Table 2: SIA Tool Summary Table - Platform (Roads)	
Table 3: SIA Tool Summary Table - Platform (Roofs)	
Table 4: Discharge Rate Methods and Results	
Table 5: Summary of SuDS Basins	19
Table 6: Extract from Buffington and Montgomery (2013)	
Table 7: Filter Drain Maintenance Schedule	
Table 8: Swales and Ditches Maintenance Schedule	29
Table 9: SuDS Basins Maintenance Schedule	30

Figures

Figure 1: Indicative Site Location	4
Figure 2: Existing Access Routes	6
Figure 3: Drainage Feature Locations	8
Figure 4: Greens 400kV Proposed Substation Drainage Layout	9
Figure 5: PRP Proposed Substation Layout	10
Figure 6: Proposed Access Track Locations	11
Figure 7: Extract from CIRIA C648, Table 19.2	22

Appendices

APPENDIX 1	PROPOSED SITE BOUNDARY AND LAYOUTS	33
APPENDIX 2	EXISTING DRAINAGE LAYOUT	34
APPENDIX 3	PROPOSED PRP LAYOUT	35
APPENDIX 4	GREENFIELD RUN-OFF CALCULATIONS	36
APPENDIX 5	MICRODRAINAGE SOURCE CONTROL CALCULATIONS	37
APPENDIX 6	INITIAL MICRODRAINAGE MODEL SUMMARY & RESULTS	
APPENDIX 7	PROPOSED DRAINAGE DRAWINGS	
APPENDIX 8	TEMPORARY DRAINAGE CALCULATIONS	40

1.0 INTRODUCTION

1.1 General

- 1.1.1 Fairhurst have been appointed by Siemens Energy BAM Joint Venture (SEBAM) to produce a drainage strategy to inform the drainage design proposals at the proposed Greens 400kV Substation in Aberdeenshire. The site is part of Scottish and Southern Electricity Networks (SSEN) £7bn upgrade of their onshore electricity transmission infrastructure.
- 1.1.2 This Drainage Impact Assessment (DIA) report will assess potential impacts of existing watercourse / channels and their required realignments, surface water and foul water drainage across the site. This report also considers any relevant information from the Drainage Strategy report compiled for the proposed substation at Greens.
- 1.1.3 For the Drainage Strategy report see document no. GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0001
- 1.1.4 The site is part of SSEN's £7bn upgrade of their onshore electricity transmission infrastructure.
- 1.1.5 The development forms part of a proposed 400kv upgrade from the existing 275kV network between Beauly and Peterhead. The proposed substation at Greens is part of this network route.
- 1.1.6 This DIA has been compiled to outline the potential impacts for the substation platform to support the planning application for the proposed electrical substation at Greens.
- 1.1.7 While this report takes into account any relevant information from ground investigation reports and flood risk assessments, these reports will be issued separately to the client.
- 1.1.8 This DIA covers the drainage system designed by Fairhurst only. Patterson Reeves & Partners (PRP) are responsible for substation platform drainage design inside the substation platform fenceline.

1.2 Site Location

- 1.2.1 The proposed substation site at Greens is situated approximately 10km east of the town of Turriff, Aberdeenshire. The site can be accessed via the B9170 then along an unnamed road to the site entrance
- 1.2.2 The site is situated approximately 6.3km west of New Deer and 3.6km south east of Cuminestown. The site also lies approximately 2.9km north west of an existing substation at New Deer. The site lies north of the Main of Greens residential property. A plan of the location of the proposed development in relation to the local area is provided in *Figure 1*.

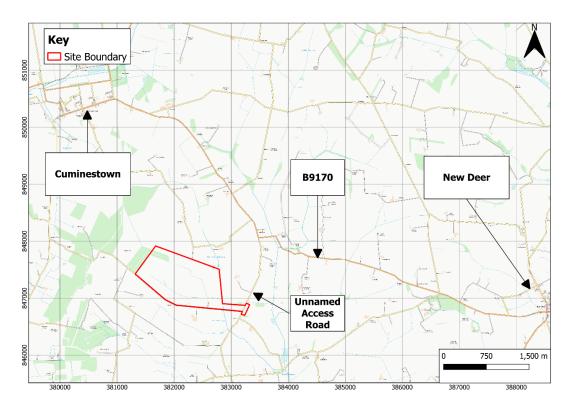


Figure 1: Indicative Site Location Contains Ordnance Survey data @ Crown copyright and database rights 2024

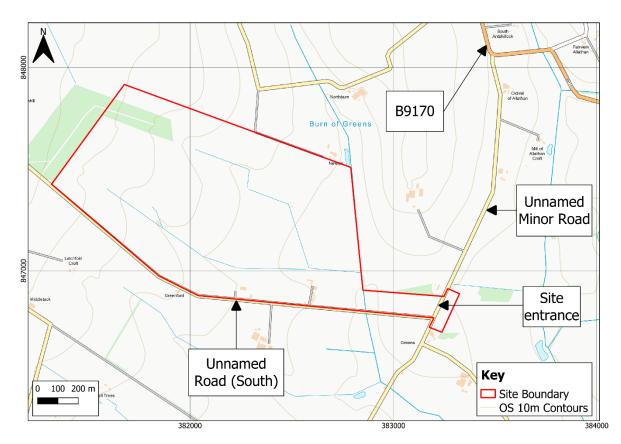
1.2.3 The site within the red line boundary is approximately 114.5ha. The proposed substation platform covers an area of approximately 21.5ha within the substation fenceline. An additional perimeter track will also be provided around the substation platform outside of the substation fenceline. An additional overhead line pylon platform is also proposed to the north of the substation platform, with a total hardstanding area of 2.1ha. The associated proposed access tracks contribute to an approximate additional 2.0ha. The remainder of the site has been allocated to the proposed SuDS features and access roads within the site. During the construction phase, temporary laydown areas and access routes will be present throughout the site. Refer to the proposed site layout drawings in **Appendix 1** for details of the proposed and temporary arrangements within the site boundary.

1.3 **Design Considerations**

- 1.3.1 The DIA has been prepared to define the scheme for the site with regards to the proposed drainage channel realignments, surface water and foul water drainage. The assessment will consider overall drainage impacts for the proposed substation platform.
- 1.3.2 The DIA will assess the surface water run-off and any foul water from the proposed site. This report will also discuss the management of existing groundwater and temporary drainage during the construction, and the maintenance of the completed network. The drainage has been prepared to the requirements and recommendations of the following documents:
 - SEPA Water Assessment and Drainage Assessment Guide
 - Aberdeenshire Council Drainage Impact Assessment: Guidance for Developers and Regulators (Aberdeenshire Council)
 - CIRIA SuDS Manual C753
 - SSEN Earthworks Specification SP-NET-CIV-501
 - SSEN Drainage Specification SP-NET-CIV-502

- Sewers for Scotland v4.0 (note this document was considered as a reference for design although not applicable as the drainage will not be vested by Scottish Water)
- 1.3.3 Further to the above documentation the DIA also relies on information provided in the Drainage Strategy.

1.4 Drainage assumptions within the Substation


- 1.4.1 The drainage design within the Greens substation fenceline is being designed by PRP. Assumptions have been made during the drainage design to allow for a worst-case scenario, to provide a conservative design for the proposed SuDS design for the site. Assumed details include:
 - The substation platform shall be assumed to be 100% impermeable for the purposes of the drainage design outwith the substation platform;
 - Global Entry Time to drainage features outside of the substation platform is set at 120 minutes;
 - All oily water or foul water requiring specific treatment due to operations within the substation platform shall be treated sufficiently as part of the PRP drainage philosophy and design. The run-off shall then connect to the proposed Fairhurst designed SuDS drainage outside of the substation platform fenceline for attenuation purposes;
 - All surface water run-off from hard standing surfaces within the substation platform fenceline will discharge to the proposed SuDS drainage outside of the fenceline, and tie-in points coordinated between PRP and Fairhurst;
 - Platform drainage will discharge to four separate locations from the substation platform to the proposed surface water system:
 - No. 1 to the north of the platform;
 - No. 2 to the east of the platform;
 - No. 3 to the east of the platform;
 - No. 4 to the south of the platform

2.0 EXISTING SITE DESCRIPTION

2.1 Existing Site

- 2.1.1 The site is located in a rural area and is currently used for agricultural purposes. The site is bounded to the west/northwest by a forested area with the rest of the site bounded by agricultural fields and access roads. There are a few neighbouring residential dwellings and agricultural properties nearby.
- 2.1.2 The site is accessible via the B9170, followed by an unnamed road for approximately 1.5 km towards the site entrance. Another minor road near the entrance runs along the southern boundary providing access to the western extent of the site. There are also agricultural access tracks within the site boundary branching off the un-named road to the south of the site. Refer to *Figure 2* for locations of existing access routes.

2.1.3 An Existing Site layout can be seen in in **Appendix 2.**

Figure 2: Existing Access Routes Contains Ordnance Survey data @ Crown copyright and database rights 2024.

2.2 Site Topography

2.2.1 The site topography within the redline boundary generally slopes from northwest to southeast with a fall in elevation from 155mAOD (northwest) to 102mAOD (southeast) over approximately 1.5km.

2.3 Ground Conditions

- 2.3.1 Ground investigation information has been obtained from the Fairhurst Geo-environmental Desk Study Report (Document no. GRNS4-LT379-SEBAM-ZZ-ZZ-RPT-G-0001).
- 2.3.2 The current site features made ground, peat and alluvium. Glacial till which is present site wide, is typically cohesive clay with sand, gravel and cobbles also present. Locally glacial till is described as granular mixes of silty gravel, sand and cobbles.

Peat

2.3.3 Peat deposits have been identified around the site (approx. 1km north, west and south) and also within the site boundary. Ground investigations indicate a small area of marsh, possibly peat, at the south western area of the site.

Groundwater

- 2.3.4 Groundwater levels are shallow throughout the site and range from depths of 0.6mbgl to 3.3mbgl.
- 2.3.5 Due to the shallow depths of the groundwater, careful management will be required during the construction phase (particularly with any excavations) with long term management plans required for the post-construction phase.

2.4 Flood Risk

- 2.4.1 A review of *SEPA Flood Maps* shows a 10% risk of fluvial flooding along the eastern area of the site associated with the Burn of Greens. No coastal or pluvial flooding is shown at the location.
- 2.4.2 Due to a higher likelihood of fluvial flooding, Aberdeenshire Council guidelines state a flood risk assessment (FRA) should be carried out to assess potential flooding implications resulting from the project. Please refer to Fairhurst prepared FRA, GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0003, which provides full details of the flood risk across the site and the corresponding impacts.

2.5 Utilities

- 2.5.1 SSEN currently have existing utilities within the site including below ground service cables and overhead mains cables (LV mains) to existing properties in and around the site.
- 2.5.2 Health and Safety Executive guidance note GS6: Avoiding danger from overhead power lines, must be followed during the planning and construction phases.
- 2.5.3 Utility information supplied by Scotia Gas Networks (SGN), states that there are no gas assets within the site boundary and to the immediate vicinity of the site.

3.0 EXISTING WATERCOURSES AND DRAINAGE FEATURES

3.1 Watercourses

- 3.1.1 The closest watercourse shown on the OS 1:50,000 scale map is the nearby Burn of Greens. This runs along the eastern boundary of the site and flows north to south.
- 3.1.2 Refer to **Appendix 2** for details on existing water features near the proposed substation platform.

3.2 **Drainage Features**

- 3.2.1 There are a number of existing drainage features present on site. Two small engineered ditches flow south eastwards through the site and merge upstream of where they discharge to the Burn of Greens at the south eastern corner of the site. It was confirmed by the landowner during a visit to site that these engineered ditches are fed by springs within the site boundary. Field drains are also present in addition to the engineered ditches.
- 3.2.2 During a site visit in May 2024 by Fairhurst, a private water supply and several areas of saturated ground and possible ground springs were observed. The observations from the site visit are shown in *Figure 3* below.

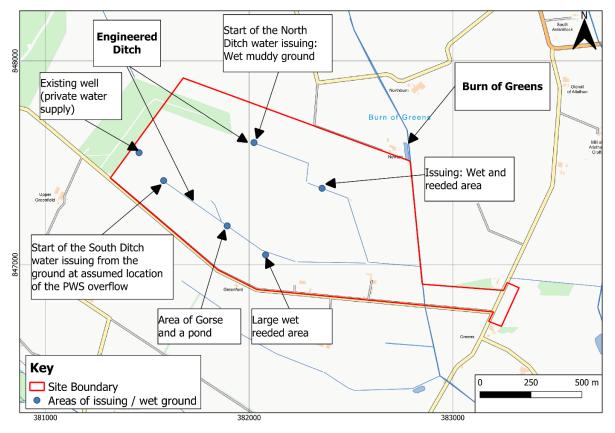


Figure 3: Drainage Feature Locations Contains Ordnance Survey data @ Crown copyright and database rights 2024.

4.0 PROPOSED DEVELOPMENT

4.1 **Proposed Substation**

- 4.1.1 In order to upgrade the existing Beauly to Peterhead overhead line from 275kV to 400kV, additional substations are required for the line to allow connection to the upgraded circuit. This includes the proposed Greens 400kV substation.
- 4.1.2 The proposed Greens 400kV substation development consists of the main substation platform and an OHL Pylon platform, which has an approximate total area of 23.6ha, with the finished platform level of 129.5mAOD. The 23.6ha area does not include engineered slopes and earthworks extents.
- 4.1.3 The finished development proposals incorporate bunds on site to contain noise and conceal views of the substation from the surrounding areas.
- 4.1.4 The proposed drainage arrangement for the Greens substation is shown below in *Figure 4*.

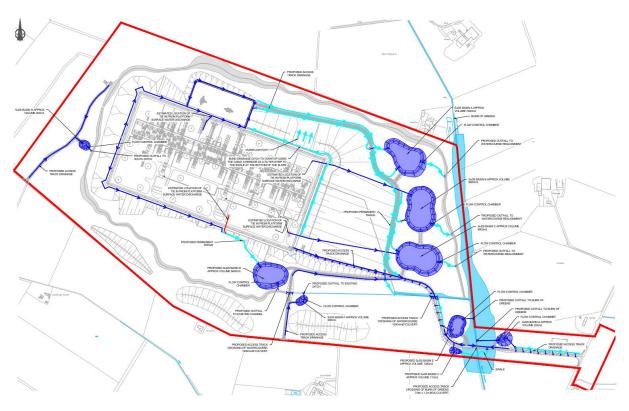


Figure 4: Greens 400kV Proposed Substation Drainage Layout

- 4.1.5 The proposed substation platform shall be formed of a build-up of a minimum of 1.0m crushed rock and will be predominantly free draining material, acting as a drainage blanket. This makes up part of the PRP drainage philosophy of the drainage inside the fenceline of the substation platform.
- 4.1.6 The substation will contain several buildings and hardstanding areas which will be impermeable. It is assumed that the PRP substation platform drainage design includes

sufficient remediation measures for any oil that may contaminate run-off. Details of the PRP drainage philosophy can be found in **Appendix 3**.

4.1.7 The drainage for the area within the fenceline of the substation platform will be designed by PRP. See *Figure 5* for the PRP layout agreed with SEBAM as the current available layout to be used at the date of this report. This can be found, along with their associated drainage philosophy, in **Appendix 3**.

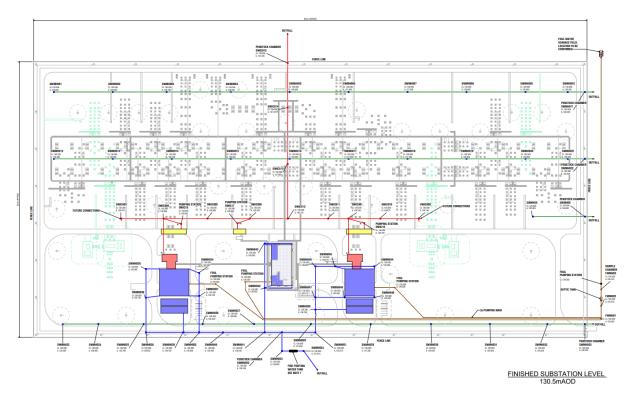


Figure 5: PRP Proposed Substation Layout

4.2 Proposed Access Tracks

4.2.1 The substation proposes access from an unnamed road approximately 1.5 km south of the B9170. The platform access track will traverse the site in a westerly direction towards the platform. Approximately 750m along the track, it splits to provide access to the northern side of the platform and the OHL pylons platform. This is named the tower access track. A secondary access track is also provided located to the west of the platform. A final alternative access track provided to the south of the platform, and west of the Parkside of Greens property within the site. The alternative access track shall act as an emergency access track to allow access in the event that the Burn of Greens are shown below in *Figure 6*.

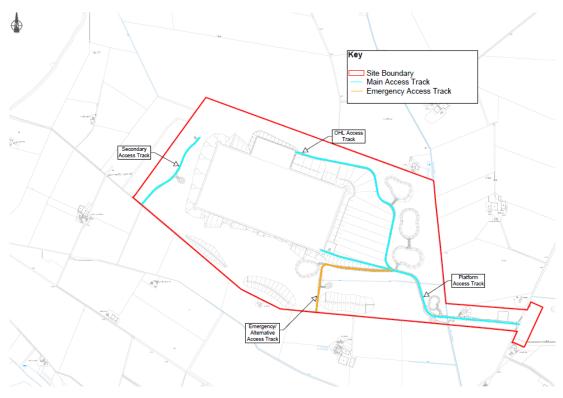


Figure 6: Proposed Access Track Locations Contains Ordnance Survey data @ Crown copyright and database rights 2024

- 4.2.2 The proposed track will have areas of cut and/or fill along the length of the tracks, which shall contain suitable drainage. It is proposed that the main access track will have a bound surface. All other access tracks within the site are to be of un-bound granular construction. SSEN specifications state that unbound granular material used be Type 2 sub-base.
- 4.2.3 Access tracks are proposed to allow for the maintenance of the proposed permanent SuDS basins and other SuDS features. SuDS access tracks will be unbound unless stated otherwise.

5.0 PROPOSED DRAINAGE

5.1 **Drainage Principles**

5.1.1 The principles of the drainage strategy for the new 400kV substation at Greens in Aberdeenshire will be to replicate the existing quality and quantities of run-off presently at the site wherever it is reasonable and practical to do so. All post development run-off shall also be dispersed in accordance with local authority (Aberdeenshire Council) and SEPA guidelines, and SSEN drainage specification (*Document number SP-NET-CIV-502*).

5.2 **Design Philosophy**

- 5.2.1 In addition to SSEN drainage specification and Local Authority guidelines, the proposed surface water design has been designed to follow the philosophy detailed in *CIRIA C753: The SuDS Manual* wherever possible. The manual states:
 - Wherever possible, run-off should be managed at source (i.e. close to where the rain falls) with residual flows then conveyed downstream to further storage or treatment components where required.
 - The passage of water between individual components should be through the use of above ground conveyance systems (e.g. swales and rills).
 - Pipework may be a more suitable option depending on the specific scheme, especially where space is limited.
 - Pre-treatment (the removal of litter and sediment) and maintenance are vital to ensure the long-term and sustained effectiveness of all Sustainable Drainage Systems (SuDS) components.
 - Overland flow routes may also be required to convey and control floodwater safely during extreme events.
- 5.2.2 All proposed drainage within the site will be drained using SuDS principles and will be adhered to during the design with the following:
 - Natural run-off collection and diversion (where required);
 - Platform surface water run-off drainage collection and routing; and
 - SuDS basins, cut-off drains & ditches for treatment and attenuation.
- 5.2.3 The existing engineered ditches within the site are required to be realigned to accommodate the proposed substation design and associated works. This is addressed in *Section 10*.

5.3 **Design Assumptions**

- 5.3.1 Fairhurst have received instruction from SSE to assume the substation platform as 100% impermeable, for the purposes of the drainage design. Further assumptions include:
 - The substation surface run-off will be collected via filter drains within the platform;
 - Global Entry time to drainage features for the substation platform is set to 120 minutes;
 - All oily water or water which requires specific treatment due to operations within the substation platform fenceline shall be treated sufficiently inside the fenceline as part of the PRP drainage design. The run-off shall then connect to the proposed Fairhurst designed SuDS drainage outside of the substation platform fenceline for attenuation purposes;
 - All surface water run-off from hardstanding surfaces within the substation platform fenceline will discharge to the SuDS drainage outside of the fenceline, and tie-in points shall be coordinated between PRP and Fairhurst;

- The platform drainage will discharge surface water to four separate locations from the substation platform:
 - No. 1 to the northern boundary of the platform;
 - No. 2 to the eastern boundary of the platform;
 - No. 3 to the eastern boundary of the platform; and
 - \circ No. 4 to the southern boundary of the platform.

5.4 **Design Parameters**

- 5.4.1 The design shall adhere to the relevant SSEN specifications to meet the client's requirements. These specifications are listed below:
 - SP-NET-CIV-502 Drainage Specification
 - SP-NET-CIV-503 Pavements and Roadways
- 5.4.2 The following publications have also been considered in design decisions in accordance to SSEN SP-NET-CIV-005 Drainage Specification:
 - CIRIA C753: The SuDS Manual
 - SEPA: Scottish Flood Hazard and Risk Information
 - SUDSWP: Water Assessment and Drainage Assessment Guide
- 5.4.3 The SSEN Drainage Specification, document number SP-NET-CIV-502 states the following with regards to design requirements: "The strategy shall identify the levels of flood protection for the site. As a minimum these shall include:
 - 1 in 200-year rainfall period protection for operational areas;
 - 1 in 1000-year rainfall return period protection for critical equipment;
 - 1 in 200-year rainfall return period for off-site flooding."
- 5.4.4 SSEN specifications state that both the platform and access road should be considered as operational areas. This will be determined by the Contractor through consultation with the SSE Transmission Project Engineer.
- 5.4.5 The Aberdeenshire Council Drainage Impact Assessment guidance states "In general terms the rate and volume of surface water run-off from the post-development situation should not exceed the surface water run-off from the existing site." However, in line with current SSEN Drainage Specification SP-NET-CIV-502, "the surface water drainage strategy shall be, in principle, to mimic the quality and quantity of the run-off from the site in its 'greenfield' state, in so far as it is reasonable and practicable and where appropriate additional post development run-off shall be dispersed in accordance with local authority and SEPA guidance."
- 5.4.6 Aberdeenshire Council guidance states that "The design of the SUDS measures on the site should be as follows using simulation to determine the critical duration associated with specified rainfall return periods:
 - Attenuation measures should be designed such that SUDS features will not overflow during a 10-year return period rainfall event.
 - A sensitivity test to assess the effect of the 50-year return period rainfall event on the surrounding property and road network, to ensure that failure of the measures will not have a detrimental effect on these areas, may be required.

- A further sensitivity test to ensure that there is no flooding to property during the 200year return period rainfall event may also be required."
- 5.4.7 The drainage design has accommodated on-site storage of up to and including the 1 in 200year return period storm with a discharge rate equivalent to the 1 in 2-year return period, of 44.1 l/s to accommodate SSEN Specifications. Please refer to *Section 7.5*, *Table 4* for details on proposed discharge rates.
- 5.4.8 Climate change allowances have been added when considering the proposed surface water drainage design within the development site. The *SEPA climate change allowances for flood risk assessment in land use planning, version 4, Table 2* recommends a 37% uplift for rainfall data at Greens, which falls within the North-East Scotland basin region. This climate change allowance shall be considered during surface water drainage design as required by SEPA guidelines.

5.5 Drainage Outfall Options

5.5.1 The options available for discharging surface water are recommended by *CIRIA C753: The SuDS Manual* hierarchy. The hierarchy with site relevant considerations are summarised in *Table 1* below:

Outfall Method	Suitability	Comments
Infiltrate run-off back into the ground.	Suitability is not known at this time as no infiltration test have been completed.	Conclusive infiltration tests are required prior to confirming if this option is available at the Greens development site.
Discharge run-off to watercourse	Burn of Greens runs along East of the proposed site, there is a risk of flooding at the burn. An FRA has been carried out to ensure any crossings/pipes are of a size that is unlikely to contribute to raising flood risk, and has assisted in design decisions.	An FRA has been provided in line with the proposed design, GRNS4-LT379-SEBAM-DRAI- ZZ-RPT-C-0003.
Discharge run-off to surface or combined sewers.	There are no known Scottish Water sewers at the site location so there could be no discharge to a sewer network.	Not feasible.
Discharge run-off into existing water features such as ponds.	Proximity to existing watercourses/drainage features to be examined to determine suitability.	Proposed SuDS basins have been designed to connect with existing/proposed water features.

Table 1: CIRIA C753: The SuDS Manual Outfall Hierarchy Outfall Options

6.0 DRAINAGE STRATEGY: PLATFORM

6.1 Patterson Reeves and Partners Drainage

- 6.1.1 All drainage within the substation platform fenceline has been designed by PRP, and information in this Section summarises the PRP strategy. Information provided in the PRP drainage philosophy shows the platform to be constructed with a 1m free-draining granular material to provide infiltration through the platform, acting as a drainage blanket. It has been assumed this will be positively drained to the proposed surface water drainage design outside of the substation fenceline.
- 6.1.2 Flows from the run-off from proposed building roofs and pumped flows from the bunds and tanker standing areas are positively drained into pipework which are sized to prevent any surface flooding during a 1 in 1000-year return period storm. The philosophy of the surface water drainage strategy is to replicate the equivalent Greenfield run-off rates.
- 6.1.3 The PRP drainage philosophy states that drains associated with oily water within the substation platform shall drain positively via "*intelligent pumping systems which will detect the presence of oil. These will cease operation if oil is detected. Flows from these locations will pass through above -ground oil separators, before passing downstream.*"
- 6.1.4 Further information can be found on the drainage drawing provided by PRP, and can be referred to in **Appendix 3**.
- 6.1.5 Calculations have been carried out by Fairhurst to estimate the attenuated volume of surface water run-off from the platform to the maximum allowable discharge rate. The attenuation storage design has been developed on the basis that the platform has a 100% impermeable area at formation level to allow for the worst-case scenario for the attenuation storage volume requirements. Following completion of geotechnical assessment across the site, the final volumes will be determined during the detailed design stage.

7.0 PROPOSED DRAINAGE: SUDS & ATTENUATION

7.1 Access Track

- 7.1.1 The unbound access track roads are to drain via filter drains where possible. This includes the Secondary Access Track and Alternative Access Track. The Tower Access Track will discharge to a drainage ditch/ swale. Surface water run-off from the tracks will flow through a series of below ground pipe systems or collection ditches/ swales. Once the surface water run-off has been collected, it will outfall to the proposed SuDS basins for treatment and attenuation before discharging into one of the proposed realigned water channels, discharging to the Burn of Greens.
- 7.1.2 For the proposed bound Platform Access Track, surface water run-off shall be collected by gullies and flow towards a series of below ground pipe systems and/or swales. Once the surface water run-off has been collected, it will outfall to a proposed SuDS basin for treatment and attenuation before eventually discharging into one of the existing or proposed realigned channels, discharging to the Burn of Greens.

7.2 SuDS Specification

- 7.2.1 The SuDS and attenuation system on site has been designed in accordance with:
 - SSEN Drainage Specification document SP-NET-CIV-502
 - CIRIA C753: The SuDS Manual

7.3 Simple Index Analysis (SIA) Tool

- 7.3.1 All proposed SuDS schemes are designed in compliance with *CIRIA C753: The SuDS Manual (2015).* The *Simple Index Analysis (SIA) Tool* has been developed by SEPA to assess the suitability of proposed SuDS components at a development and to minimise any risks to the water quality of any receiving waterbodies.
- 7.3.2 Outputs from the SIA study for each area are detailed below for the substation platform.
- 7.3.3 PRP are dealing with all required treatment of the substation platform site operations, including for any required specialist treatments. For example, oily water treatment shall be designed and contained within the substation platform. Therefore, it is assumed Fairhurst will provide suitable treatment for both low trafficked roads, and simple industrial roofing.
- 7.3.4 As detailed in *Section 6*, Information provided by PRP drainage philosophy shows the platform is to be constructed with a 1m free-draining granular material to provide infiltration through the platform and will act as a drainage blanket. This has been included to the SIA tool as a filter drain for design purposes. As detailed in Section 6, the proposed 1m free-draining granular material shall be above a 100% impermeable formation layer, which requires all surface water run-off from the substation platform to be positively drained to the external drainage and SuDS system.

Run-off area land-use description	Platform: Low Trafficked Roads			
Pollution hazard indices:	Hazard Level	Suspended Solids	Metals	Hydrocarbons
	Low	0.5	0.4	0.4
Pollution mitigation indices (SuDS basin):		0.5	0.5	0.6
Pollution mitigation indices (Filter drain):		0.4	0.4	0.4
Total mitigation Index:		0.9	0.9	1.0
Sufficiency:		Sufficient	Sufficient	Sufficient

Table 2: SIA Tool Summary Table - Platform (Roads)

Table 3: SIA Tool Summary Table - Platform (Roofs)

Run-off area land-use description	Platform: Commercial / Industrial Roofing (High Potential for Metal Leaching Assumed)			
Pollution hazard indices:	Hazard Level	Suspended Solids	Metals	Hydrocarbons
	Low	0.3	0.8	0.05
Pollution mitigation indices (SuDS basin):		0.5	0.5	0.6
Pollution mitigation indices (Filter drain):		0.4	0.4	0.4
Total mitigation Index:		0.9	0.9	1.0
Sufficiency:		Sufficient	Sufficient	Sufficient

7.3.5 Both *Table 2* and *Table 3* above show that sufficient treatment has been proposed for the substation platform based on the assumptions stated in paragraph 7.3.4.

7.4 SuDS/Drainage Catchments

- 7.4.1 Catchment analysis indicates that the natural catchment of the proposed development site currently discharges to the existing engineered ditches prior to ultimately discharging to the Burn of Greens.
- 7.4.2 The substation platform and OHL platform areas cover a total of approximately 23.6ha, not including engineered slopes and natural catchments. It is proposed to split this area into four catchments for attenuation purposes to mimic the natural catchment characteristics as best as possible. Overland flow and excess surface water flow from the platform will be collected via perimeter drainage and discharged to one of four SuDS basins.
- 7.4.3 Similarly, run-off from the proposed substation access tracks will be collected via suitable SuDS features that have been included within the verge of the proposed road. Five

additional basins have been proposed to deal with road run-off to accommodate level variations and provide effective drainage.

- 7.4.4 The substation platform, OHL pylon platform and access tracks have an approximate combined area of 25.6ha and have been considered as 100% impermeable areas in order to investigate the most conservative attenuation requirements.
- 7.4.5 A proposed layout plan of the proposed SuDS basins is shown on the Permanent Drainage Drawing GRNS4-LT379-SEBAM-DRAI-ZZ-D-C-0171 within **Appendix 7**. The proposed SuDS basins are labelled from A-G on this layout drawing.

7.5 **Discharge Rates**

- 7.5.1 The rate of surface water run-off from the post-development scenario has been designed to not exceed the Greenfield surface water run-off from the existing site. Greenfield run-off rates have been calculated using a number of methods with the most conservative value taken forward into the design. Please refer to *Table 4* below for a summary of Greenfield run-off rates.
- 7.5.2 The discharge from the basins will be limited to the equivalent Greenfield run-off rates via vortex control chambers located immediately downstream of the basin outlets. The basins have been conservatively sized to discharge up to the 1 in 200-year storm event, to the 1 in 2-year Greenfield rate. This also includes an allowance for climate change.

Impermeable Area	Substation Platform		OHL Platform		Access Road	
Return Period/Method	1 in 2- year	1 in 200- year	1 in 2- year	1 in 200- year	1 in 2- year	1 in-200 year
IH124	44.1	136.3	3.8	11.7	3.4	10.5
ReFH2	68.4	237.2	5.9	20.3	5.2	18.2
FEH	91.2	300.4	7.8	25.7	7.0	23.1

Table 4: Discharge Rate Methods and Results

- 7.5.3 The most conservative discharge rates for the SuDS basins have been calculated using the IH124 method, allowing a discharge rate of 44.1 l/s across the site for the substation platform area.
- 7.5.4 Greenfield calculations can be found in **Appendix 4**.

7.6 Attenuation

- 7.6.1 The proposed substation site surface water run-off will be gathered by perimeter drainage around the substation platform. This run-off will then be carried to the proposed SuDS basins, where it will be treated and attenuated, and finally discharged at the required discharge rate into nearby realigned water channels.
- 7.6.2 Following the guidelines and assumptions outlined in *Section 5*, source control calculations using MicroDrainage software have been produced to estimate the total storage volume required for attenuating the surface water run-off from the proposed substation platform. The attenuation has been designed to store rainfall events up to and including the 1 in 200-year return period event for the catchment area of the platform, and discharge to a 1 in 2-year Greenfield run-off rate. This conservative approach has been used to provide suitable

storage extents across the site to allow each storm event to be attenuated to the corresponding Greenfield run-off rate within the site red line boundary.

- 7.6.3 There are four proposed SuDS basins, A, B, C and D, at the site to treat and attenuate surface water run-off from the proposed substation platform. Calculations have shown that a total storage volume for the substation platform of approximately 33,800m³ is required.
- 7.6.4 Source Control estimations can be found in **Appendix 5**.
- 7.6.5 The drainage design has been further evaluated by producing an preliminary drainage model in MicroDrainage. This has been used to validate the proposed arrangement and storage requirements. The summary and results can be found in **Appendix 6**.

7.7 Basin Design

- 7.7.1 All SuDS basins have been designed to accommodate a maximum run-off from a 1 in 200year storm event from hardstanding areas (platform and access road) plus a 37% allowance for climate change in accordance with SEPA requirements (*SEPA: Climate Change Allowances for Flood Risk Assessment in Land Use Planning. Version 4, 2023*).
- 7.7.2 The discharges from the basins have been designed to limit to the equivalent Greenfield runoff rates via vortex control chambers. Following the guidance of *CIRIA C753: The SuDS Manual*, the SuDS basins have been designed to a 1.5 m depth allowing for 300mm of freeboard and providing 1.2 m depth of storage. This ensures a sufficient design head for the proposed vortex control chamber to successfully control the discharge from the basin. All basins have been designed with a 1 in 4 side slope.

Table 5: Summary of SuDS Basins						
Basin I.D.	Area Serviced	Impermeable Area (ha)	Attenuation Capacity (m ³)	Receiving Watercourse		
A	12.5% of platform + OHL area	4.8	7400	North realigned channel		
В	37.5% of platform	8.1	9800	North realigned channel		
С	37.5% of platform	8.1	9800	North realigned channel		
D	12.5% of platform	2.7	5000	South realigned channel		
E	Access track	1.58	1300	Burn of Greens		
F	Access track	0.213	200	Existing channel		
G	Access track	0.213	200	Burn of Greens		
Н	Access Track		200	South realigned channel		
Ι	Access Track	0.187	110	Burn of Greens		

7.7.3 A summary of overall storage volumes is provided in *Table 5* below.

SuDS Basins A & D

7.7.4 SuDS basins A and D receive run-off from the platform via swales at the toe of the platform earthworks. The basins discharge to the realigned channels to the south and north of the platform.

SuDS Basins B & C

7.7.5 SuDS basins B & C receive run-off from the platform via carrier pipes to the east of the platform. The SuDS basins then discharge to the north channel realignment.

SuDS Basins E, F, G, H & I

- 7.7.6 SuDS basins E, F, G, H and I receive run-off from access tracks via suitable SuDS facilities that have been included adjacent to the proposed road. SuDS basins E, G & I outfall to the Burn of Greens. Basin F discharges to the existing channel located to the south-east of the platform. Basin H discharge to the north realigned channel.
- 7.7.7 A proposed 3.5m access track for the purposes of maintenance is proposed. Further cut and fill will be required to tie back in to the natural topography of the surrounding landscape.
- 7.7.8 The proposed permanent drainage and SuDS arrangement can be seen in **Appendix 7**.

7.8 Cut-Off Ditches

7.8.1 Cut-off ditches are proposed to allow for the management of the overland flows at the top of the substations cut slope using the same philosophy as the above channel realignment. Ditches will be designed in line with the site's natural topography, providing channel capacity for up to and including the 1 in 200-year return period rainfall event. As the catchment is natural run-off it is proposed to discharge directly into the existing channels on or near the site.

7.9 Burn of Greens Crossing Drainage

- 7.9.1 The proposed platform access track is required to cross the Burn of Greens. The platform access track proposal in this area provides a solution which incorporates similar levels to the existing local road, located south of the new proposal. This proposal has been developed to minimise any impact to the existing 1 in 200-year + 37% climate change flood extents of the Burn of Greens. For details on Flood Risk please refer to the Flood Risk Assessment, GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0003.
- 7.9.2 A low point on the platform access track surface is proposed within the flood extent. This low point results in a surface water drainage solution to meet the treatment and attenuation requirements encroaching into the 1 in 200-year + 37% climate change flood extent of the Burn of Greens. Therefore, a solution has been proposed that avoids encroaching into the flood extent which will require a derogation from standards.

8.0 DRAINAGE STRATEGY: TEMPORARY DRAINAGE

8.1 **Temporary Platform Drainage**

- 8.1.1 Temporary drainage at the platform area has been designed to collect and control surface water run-off during the construction phase of works. This also includes the control of temporary 'laydown areas' required during the construction phase.
- 8.1.2 The proposed temporary drainage network consists of:
 - Conveyance ditches around the temporary laydown areas. These have been designed to collect any run-off from the laydown areas before conveying to the temporary settlement lagoons prior to discharging to the existing watercourse;
 - Temporary piped crossings under access tracks;
 - Temporary settlement lagoons to remove silts and suspended solids prior to discharge to the receiving watercourses.
- 8.1.3 The proposed settlement lagoons have been designed in accordance to CIRIA C648 & C649 Control of water pollution from linear construction projects. This guidance describes the use of the 1 in 10-year storm event for a temporary drainage design. The guide allows for adjustments to this design event taking into account the nature of the risk and the duration of the construction activity. An assessment has been undertaken considering the worst-case scenario in the guidance of a 1 in 10-year event to establish temporary treatment volumes required, for the duration of the construction activities.
- 8.1.4 The sizing of the temporary settlement lagoons has been undertaken based on the following assumptions:
 - Conveyance ditches around the temporary laydown areas contributing to run-off of surface water that requires treatment;
 - All surface water run-off requires treatment before discharge;
 - No climate change allowance has been included;
 - Run-off is collected in each catchment and directed towards a single location before discharge;
 - All run-off is to be stored for approximately 6-10 hours to allow settlement for assumed fine silts. Note this will require confirmation from the geotechnical team upon further site inspections and design.
- 8.1.5 The temporary lagoon areas required to store the surface water run-off volume (assuming 1m depth of water) utilising natural settlement of the material are:
 - Catchment 1 (1/2 of substation platform Area & Area 1) = 5600m²
 - Catchment 2 (Area 2) = 800m²
 - Catchment 3 (Area 3, 4 & 5) = 2400m²
 - Catchment 4 (½ of substation platform Area, Area 6 & Welfare / Office Laydown Area) = 7300m²
 - Catchment 5 (Area 5) = 800m²
 - Catchment 6 (OHL Platform) = 1000m²

- 8.1.6 Refer to **Appendix 8** for information on the temporary lagoons, contributing catchment areas and associated discharge rates.
- 8.1.7 To provide a settlement lagoon for the substation platform run-off during the construction period, the use of the permanent features is proposed. It is to be noted that following construction, the SuDS basin is to be cleaned of any silt, debris build up from use prior to the permanent use.
- 8.1.8 In addition to the volumes of storage quoted above, allowance in the overall lagoon volume is required for freeboard, and to accommodate local topography.
- 8.1.9 The discharge rates for the temporary drainage design have been determined using *CIRIA C648 Table 19.2*, which provides a suitable time for settlement based on the required runoff area and volume for each temporary laydown area. See *Figure 7* below. The discharge rates for the temporary lagoons range between 0.23 – 2.32l/s, depending on the corresponding laydown area.

Partical settling velocities for soil type as shown in CIRIA C648 Table 19.2				
Solid type	mm/sec	m/hr* ¹		Proposed Typical pond/ tank depth (m)
Fine Clay	0.001	0.0036		0.5
Fine Silt	0.02	0.072		1
Medium silt	0.05	0.18		1.5
Course Sand	30	108		2
Flocculated Silt	10	36		2.5

Figure 7: Extract from CIRIA C648, Table 19.2

- 8.1.10 The proposed temporary drainage arrangement drawing can be seen in **Appendix 7**.
- 8.1.11 The proposed temporary drainage sizing estimations can be seen in **Appendix 8**.

9.0 DRAINAGE STRATEGY: CHANNEL REALIGNMENTS

- 9.1.1 Two channel realignments have been designed to divert existing channels around the proposed substation platform and associated works. The channels currently provide conveyance of natural springs within the site to the Burn of Greens.
- 9.1.2 During the design for the channel realignments, any activities proposed within the site that may affect the natural environment, including channels, may require authorisation from SEPA under the Water Environment (Controlled Activities) (Scotland) Regulations 2011(CAR) and further amendments of 2013, 2017 and 2021.
- 9.1.3 Channels that require realignments have been designed to accommodate a 1 in 200-year flow. The channel's calculations are based on the Manning's equation for a trapezoidal cross-section:
 - $Q = v^*A = (1/n)^*AR^{(2/3)}S^{(1/2)}$

Where:

- Manning's 'n' = 0.05 for a natural stream/stony channel for diverted channels
- S = Average channel slope based on the gradient between the channel tie-in level and the channel bed level
- R = Hydraulic radius (m), which is equal to the Flow Area / Wetted Perimeter
- A = Flow area (m²)
- 9.1.4 Channel side slope gradients have been proposed as 1 in 3, but geotechnical advice will be needed to confirm this. The bed width of the channel is proposed as 1.2m. LiDAR information available for the site has been used to estimate existing channel extents and dimensions, but confirmation of this will be required prior to detailed design. With confirmation of additional details, the channel can be adjusted to complement the natural settings. The typology of the channels has been taken into consideration during the design, providing sinuosity to the channels to allow for naturalisation of the channels.
- 9.1.5 The design has implemented the typology for the catchment setting and channel average bed slope based on the table provided in *Buffington and Montgomery (2013)* - *Geomorphic Classification of rivers in Scroder J., Wohl E. (eds) Treastise on Geomorphology, Vol9, Academic Press, San Diego CA, pages 730-767. Table 6* below shows an extract.

Туре	Slope (%)	Slope (1:X)
Cascade	>7.5%	>1:13
Step pool	3% – 7.5%	1:33 – 1:13
	Or	Or
	2% – 3% (>150W/m ² in 1:2-year	1:50 - 1:33 (>150W/m ² in 1:2-year
	event)	event)
Plane bed	1% – 2%	1:100 – 1:50
	Or	Or
	2% – 3% (<150W/m ² in 1:2-year	1:50 – 1:33(<150W/m ² in 1:2-year
	event)	event)
Plane riffle	0.5% - 1%	1:200 – 1:100
Pool riffle	0.2% - 0.5%	1:500 – 1:200
Low gradient passive	<0.2%	<1:500
meandering (dune-		
ripple bed)		

Table 6: Extract from Bu	ffington and M	lontgomery (2013)

- 9.1.6 Channel crossings and realignments have been designed to accommodate a 1 in 200-year return period, as well as additional consideration for climate change. Piped crossings have been proposed to necessitate the installation of a headwall or a retaining wall at both the inlet and outlet as required. Headwalls are viewed as improvements to the existing baseline conditions.
- 9.1.7 Sustainable and ecological material choices shall be specified at detailed design stages where possible, once further investigations of the existing channels are carried out.
- 9.1.8 The proposed channel realignment drawing GRNS4-LT379-SEBAM-DRAI-ZZ-D-C-0170 can be seen in **Appendix 7**.

10.0 DRAINAGE STRATEGY: GROUNDWATER

- 10.1.1 The British Geological Society (BGS) digital mapping indicate that the rock group underlying the site (Southern Highland Rock Group), is a low productivity aquifer with small amounts of groundwater in the near surface with secondary fractures.
- 10.1.2 There is a potential for groundwater flooding to occur at surface and below ground level at the site due to shallow ground water levels which has been identified in the Fairhurst Geoenvironmental Desk Study Report (Document no. GRNS4-LT379-SEBAM-ZZ-ZZ-RPT-G-0001). This will be considered at detailed design stage.
- 10.1.3 Please refer to the Geo-Environmental Report No. GRNS4-LT379-SEBAM-ZZ-ZZ-RPT-G-0001 for details on potential groundwater flooding.

10.2 Design Considerations

10.2.1 Groundwater has been observed to be shallow at the proposed substation site and throughout the site. Due to the shallow groundwater depths, careful management will be required to monitor excavation stability during construction and also in the long term e.g. operation, slope stability and any groundwater changes which may cause flooding or dewatering of localised peat. Changes to existing groundwater and surface water control measures such as drains and pumps should be carefully planned.

11.0 DRAINAGE STRATEGY: BURN OF GREENS CROSSING

- 11.1.1 The Burn of Greens, and associated flood extents encroach the eastern red line boundary of the proposed site. A crossing is proposed of the existing Burn of Greens as part of the proposed access track to the substation in the south east of the site.
- 11.1.2 SEPA fluvial flood maps indicates out-of-bank flooding along the Burn of Greens during a 1 in 200-year plus climate change event. Due to the increased likelihood of fluvial flooding at the Burn of Greens, a Flood Risk Assessment (FRA) will be required for the site. Please refer to GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0003 for FRA.
- 11.1.3 A meeting was held with Aberdeenshire Council on 25 June 2024, where Fairhurst and SEBAM presented a range of options and scenarios for the proposed Burn of Greens crossing for consideration. It was concluded that the crossing shall be of similar level and arrangement as the existing road crossing just south of the red line boundary. This shall consist of a single span crossing, which shall prevent any increase in flood risk outside of the red line boundary in the design event. The crossing shall be allowed to overtop in the 1 in 200-year plus climate change scenario, similar to the existing road crossing. An alternative emergency access route is available to the site in extreme storm events.
- 11.1.4 The impact of the new crossing on the Burn of Greens flood extent has been investigated using hydraulic flood modelling, which assisted in providing the required sizing and overall arrangement of the proposed crossing. The findings of the modelling exercise are included within the FRA report, GRNS4-LT379-SEBAM-DRAI-ZZ-RPT-C-0003.
- 11.1.5 Hydraulic modelling has confirmed the requirement for a single span culvert of dimensions 3.9m wide by 0.9m height.
- 11.1.6 Please refer to **Appendix 7** for proposed Burn of Greens crossing details.

12.0 DRAINAGE STRATEGY: FOUL WATER MANAGEMENT

- 12.1.1 Foul water drainage management within the substation platform has been designed by PRP. Refer to drawing *GRNS4-LT379-SEBAM-DRAI-XX-LAY-C-0001* in **Appendix 3**. PRP design philosophy references the foul design shall comply with *Sewers for Scotland*. However, it should be noted that the foul drainage within the site does not connect to multiple dwellings and will not be adopted by Scottish Water. The PRP drainage philosophy also states that "foul drains are to be 100mm internal diameter... and will drain directly into a foul pumping station... and shall be pumped to a manhole outside the substation security fence. From there foul water shall drain via gravity into a septic tank. The outfall of the septic tanks shall drain into another duty/standby pumping station from where it will be pumped to a foul soakage field." Please refer to **Appendix 3** for full details.
 - 12.1.2 During construction the office and welfare facilities will be connected to a septic tank to contain the foul water from the facilities. Full design details will be determined once the contractor has provided details of the site set-up and welfare provision. Septic tanks shall be designed in accordance with BS 6297 and have a minimum of 5m clearance from adjacent buildings of plant.
- 12.1.3 Septic tanks and infiltration systems are to be sized based on calculations from the *Code of Practice British Flow and Loads 4* guidance. To assess the requirements for the proposed foul water system details (for both the temporary and permanent conditions), coordination with PRP and the contractor at later stages is required.

13.0 MAINTENANCE REQUIREMENTS

- 13.1.1 All drainage features will require regular maintenance to ensure their functionality. The frequency of a maintenance schedule varies depending on the feature type and may become less frequent over time. CIRIA C753: The SuDS Manual provides recommended maintenance requirements, which are summarised in *Tables 7 to 9*.
- 13.1.2 The proposed maintenance and inspection strategy shall be confirmed by the SHE Transmission Project Engineer for all drainage systems.

13.2 Filter Drains

Table 7: Filter Drain Maintenance Schedule

Maintenance Schedule	Required Action	Frequency
Regular Maintenance	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage.	Monthly
	Litter and debris removal from filter drain surface, access chambers & pre-treatment devices	Monthly/As required
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation and to establish appropriate silt removal frequencies.	Six monthly
	Remove sediment from pre- treatment devices.	Six monthly/as required
Occasional Maintenance	Removal or control of tree roots where they are encroaching the sides of the filter drain using recommended methods (e.g: NJUG, 2007 or BS 3998:2010).	As required
	At locations with high pollution loads, remove surface geotextile and replace and wash and replace overlying filter mediums	5 yearly or as required
	Clear perforated pipework of blockages	As required

13.3 Swales and Ditches

Table 8: Swales and Ditches Maintenance Schedule

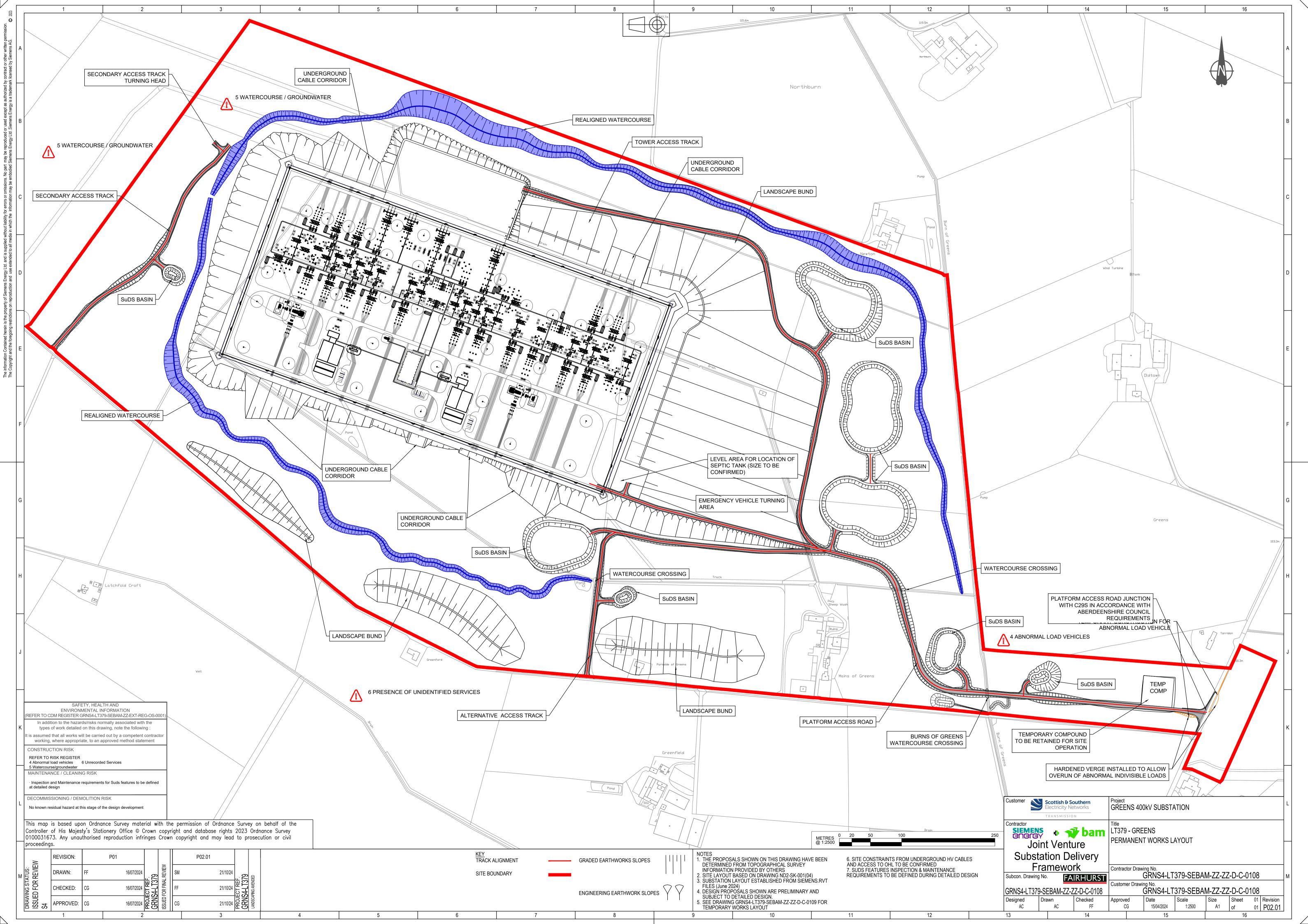
Maintenance Schedule	Required Action	Frequency
Regular Maintenance	Inspect inlets/outlets and overflows for blockages and clear if required	Monthly
	Litter and debris removal	Monthly/as required
	Grass cutting – to retain grass height within specified design range.	Monthly (during growing season) or as required
	Manage other vegetation and remove nuisance plants	Monthly at start then as required
	Inspect infiltration surfaces for ponding, compaction & silt accumulation. Record areas where ponding occurs for >48 hours.	Monthly/as required
	Inspect vegetation coverage	Monthly for 6 months then quarterly for 2 years then half yearly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies	Bi-annually
Occasional Maintenance	Reseed areas of poor vegetation growth and alter plant types to better suit conditions if required	As required of if bare soil is exposed over 10% or more of swale treatment area.
Remedial Maintenance	Repair erosion or other damage by re-turfing or re-seeding.	As required
	Re-level uneven surfaces and reinstate design levels.	As required
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip.	As required
	Remove and dispose of oil or petrol residues using safe standard practices	As required

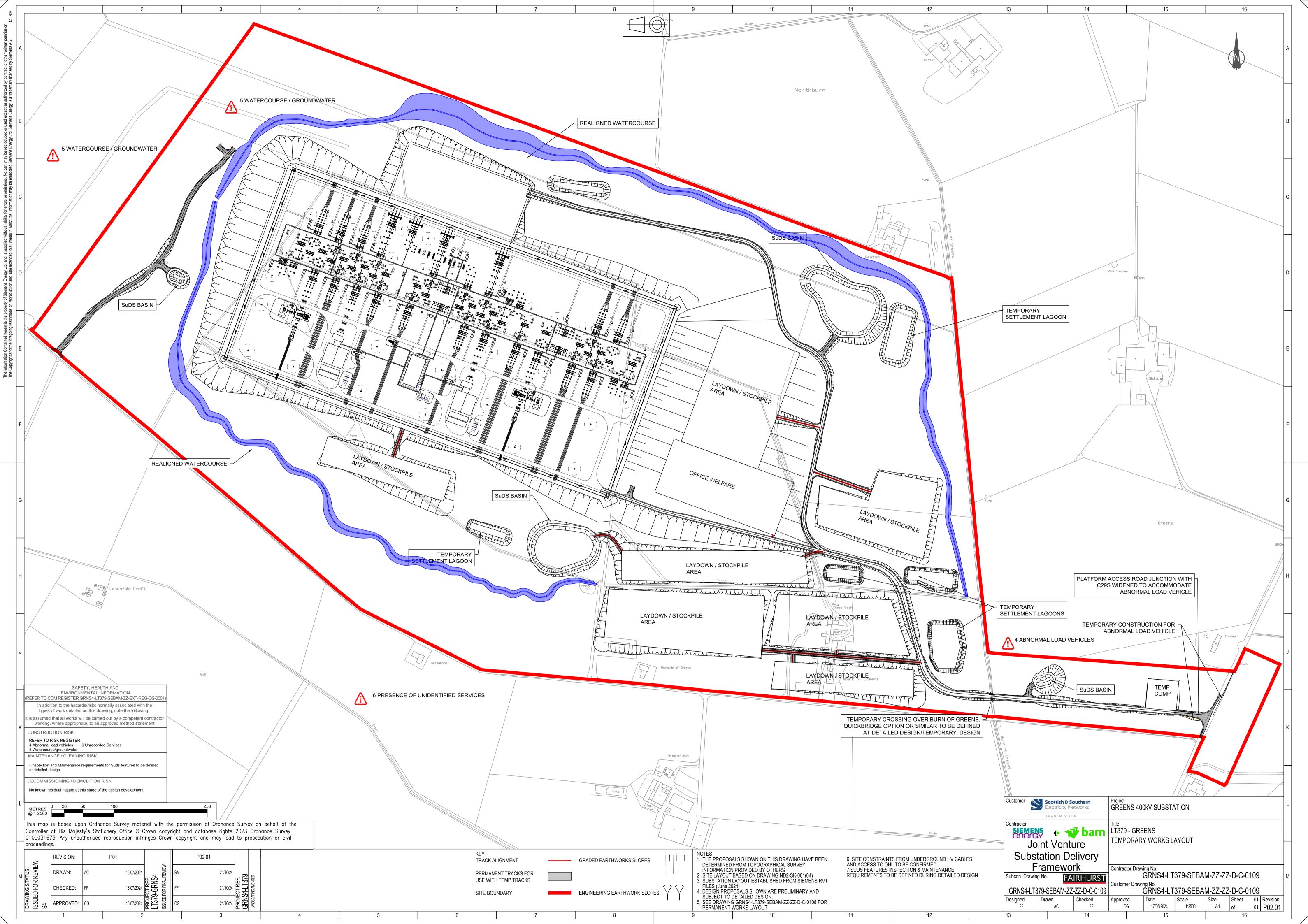
13.4 SuDS Basins

Table 9: SuDS Basins Maintenance Schedule

Maintenance Schedule	ble 9: SuDS Basins Maintenance Sc Required Action	Frequency
Regular Maintenance	Inspect inlets/outlets and overflows for blockages and clear if required.	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly for first year then annually or as required
	Inspect banksides, structures and pipework for evidence of physical damage	Monthly
	Litter and debris removal	Monthly
	Grass cutting (spillways and access routes).	Monthly (during growing season) or as required.
	Grass cutting (meadow grass in and around basin).	Bi-annually (Spring, before nesting season then again in Autumn)
	Manage other vegetation and remove nuisance plants.	Monthly, at start then as required
	Check any penstocks and other mechanical devices.	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets/outlets and forebay	Annually or as required
	Manage wetland plants in outlet pool – where provided	Annually
Occasional Maintenance	Re-seed areas of poor vegetation growth.	As required
	Prune and trim any trees and remove cuttings	Every 2 years or as required.
	Remove sediment from inlets/outlets, forebays and main basin when required	Every 5 years or as required (likely to be minimal requirements where effective upstream source control is provided).
Remedial Maintenance	Repair erosion or other damage by re-seeding or re-turfing	As required
	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

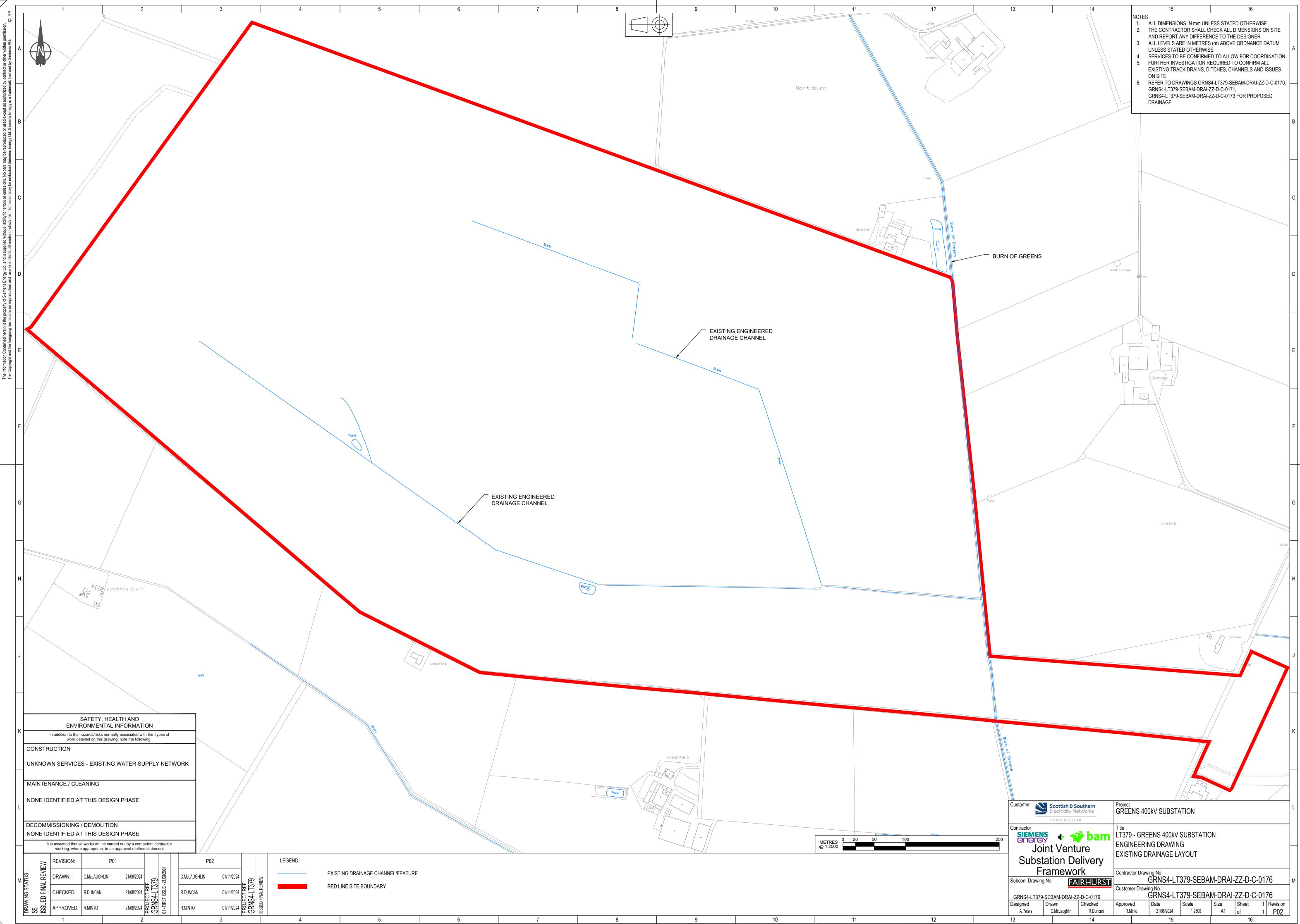
14.0 CONCLUSION

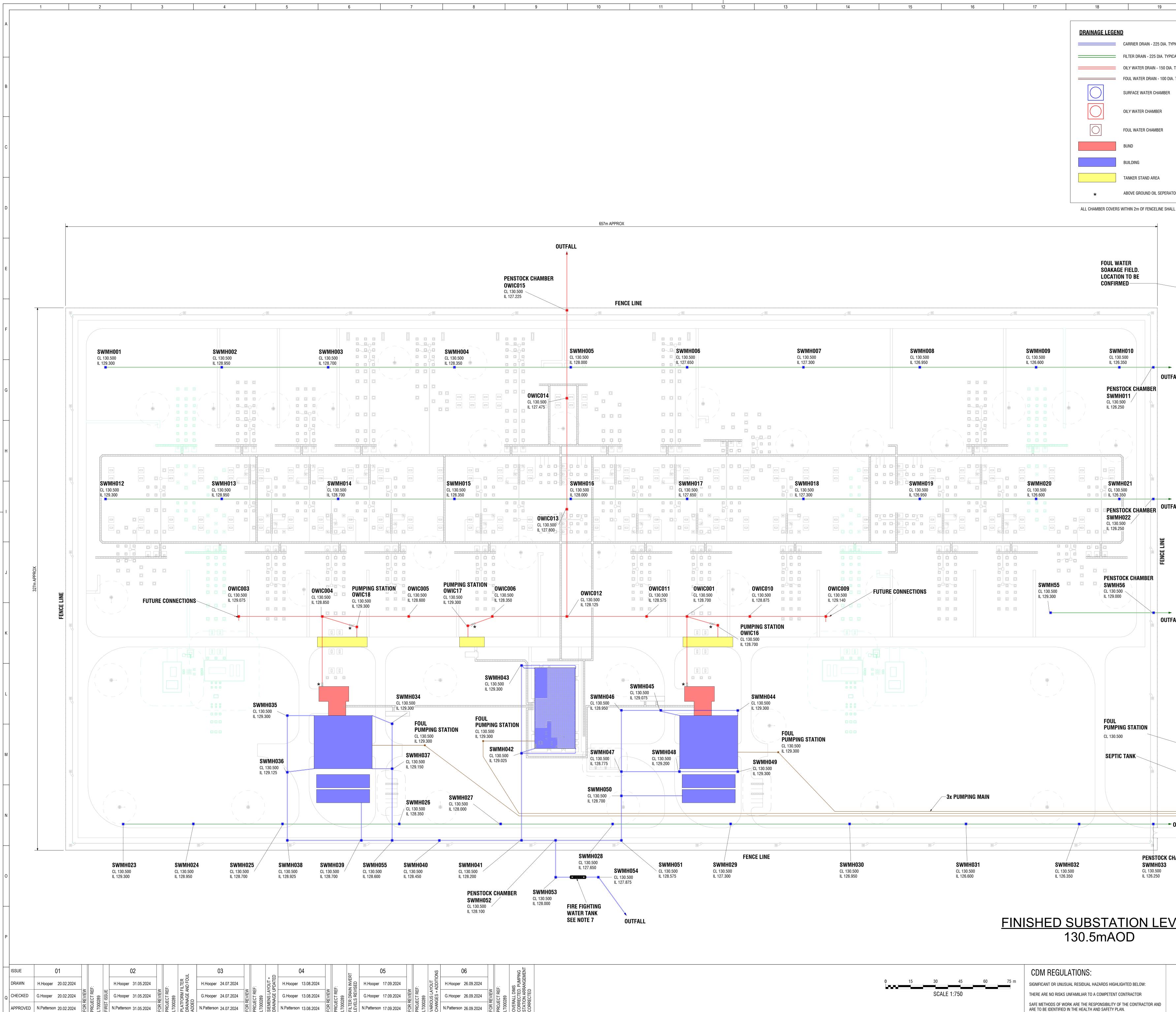

- 14.1.1 This Drainage Impact Assessment report shows the proposed drainage infrastructure and the methodology behind the designs. Design parameters have also been included in this report and appropriate guidelines have been observed in order to influence the design process.
- 14.1.2 Fairhurst are responsible for all surface water drainage proposals outside of the substation platform boundary fence. All drainage inside the fence line is designed by Patterson Reeves and Partners (PRP). Coordination between both parties is ongoing to ensure these drainage designs align as they progress to detailed design.
- 14.1.3 The proposed permanent surface water drainage has been designed in accordance with Aberdeenshire Council, SEPA and SSEN guidance. Greenfield run-off rates and attenuation volumes to be stored up to and including the 1 in 200-year return event storm. This has contributed to the SuDS design throughout the scheme allowing for the sizing of the attenuation basins of up to 33,800m³ storage capacity for run-off from the substation platform (excluding earthworks), and for associated access roads within the site. Filter drains and swales / ditches shall convey surface water from the platform and the access roads to the SuDS basins, and discharge treated surface water run-off into the proposed channels across the site in 8 no. locations.
- 14.1.4 The temporary surface water design has also been considered. This consists of conveyance ditches around the temporary construction 'laydown area' platforms, which then discharge to settlement lagoons. The settlement lagoons have been designed to allow the settlement of suspended solids prior to discharge to the natural environment, for up to the 1 in 10-year storm event.
- 14.1.5 The existing north and south drainage channels have been incorporated into the design around the platform. The channel realignments of the existing channels have been designed to accommodate the location of the proposed substation platform and associated access tracks and work areas. This has been designed with current best practice, and shall include sinuosity where possible.
- 14.1.6 The surface water and foul water drainage within the substation platform has been designed by PRP. Further details can be found in the design philosophy provided by PRP in drawing BING4-LT521-SEBAM-DRAI-XX-LAY-C-0001, in **Appendix 3**.
- 14.1.7 Groundwater has been observed to be shallow at the proposed substation site and throughout the site. Due to the shallow groundwater depths, careful management will be required to ensue excavation stability during construction and also in the long term, e.g. operation, slope stability and any groundwater changes which may cause flooding or dewatering of localised peat. Changes to existing groundwater and surface water control measures such as drains and pumps should be carefully planned. Please refer to the Geo-



Environmental Report No. GRNS4-LT379-SEBAM-ZZ-ZZ-RPT-G-0001 for details on potential ground water flooding.

14.1.8 Consultations are ongoing to confirm the proposed Burn of Greens crossing. Details can be found in the Flood Risk Assessment.


Appendix 1 Proposed Site Boundary and Layouts



Appendix 2 Existing Drainage Layout

Appendix 3 Proposed PRP Layout

	05			SNC	06		MENT					
er	17.09.2024		ц.	YOUT	H.Hooper 26.09.2024		AS . PUMPING ZANGEMEN					
ər	17.09.2024	REVIEW	PROJECT REF: LT000289	VARIOUS LAYOUT CHANGES + ADDITIONS	G.Hooper 26.09.2024	FOR REVIEW PROJECT REF LT000289	ALL DIMS (ECTED. P ON ARRA (ECTED					
on	17.09.2024	FORF	PROJI LT000	VARIC	N.Patterson 26.09.2024	FOR REVIE PROJECT LT000289	OVERALL CORRECT STATION / CORRECT					
		7			8			9	10	11	12	

		45	60	75 m	SIGNIFICANT OR UNUS	
	 30.	ALE 1:750			THERE ARE NO RISKS SAFE METHODS OF WO ARE TO BE IDENTIFIED	ORK ARE
4.4			10		47	

	1. DO NOT SCALE, WORK TO DIMENSIONS SHOWN. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS SHOWN OTHERWISE. 2. THE CONTRACTOR IS RESPONSIBLE FOR THE LOCATION OF ALL EXISTING SERVICES WITHIN THE WORKS AREA AND FOR THE STRUCTURAL STARWAY THROUGHOUT THE WORKS
PICAL	STRUCTURAL STABILITY THROUGHOUT THE WORKS. 3. CONTRACTORS ARE TO BE AWARE OF THEIR RESPONSIBILITIES UNDER THE CDM REGULATIONS & COMPLY WITH THEM AT ALL TIMES. NOTE THAT ANY HAZARDS IDENTIFIED ON THE DRAWINGS ARE ONLY THOSE WHICH MAY NOT BE
TYPICAL	OBVIOUS TO COMPETENT PERSONS OR ARE UNUSUAL OR WHICH MIGHT BE DIFFICULT TO MANAGE. 4. WORKING AREAS AND METHODS TO BE AGREED BEFORE WORK COMMENCES.
TYPICAL	5. THE TERM 'CONTRACTOR' REFERS TO THE CONTRACTOR RESPONSIBLE FOR THE INDIVIDUAL ELEMENT OF THE WORKS. 6. UNLESS NOTED OTHERWISE THE SPECIFICATION FOR THE WORKS IS :-
	 SP-NET-CIV-501, SPECIFICATION FOR EARTHWORKS - Rev 1.00 July 2020. SP-NET-CIV-502, DRAINAGE SPECIFICATION - Rev 1.01 July 2020. WHERE PROPRIETARY ITEMS HAVE BEEN SPECIFIED, SIMILAR APPROVED PRODUCTS WILL BE ACCEPTABLE BUT
	ONLY WHERE AGREED WITH PATTERSON REEVES & PARTNERS. 7. MINIMUM 120,000 LITRE BURIED FIRE FIGHTING WATER STORAGE TANK. <u>HYDRANTS WILL NOT BE PROVIDED</u> , WATER STORAGE
	TANK SHALL BE ACCESSIBLE FROM OUTSIDE THE SUBSTATION. FIRE FIGHTING AUTHORITY WILL NEED TO USE THEIR OWN SUCTION DEVICE TO GAIN ACCESS TO FIRE FIGHTING WATER.
OR	
L BE GRP	A) NORMAL SITE OPERATION
	SURFACE WATER
	APART FROM BUILDINGS, IMPERMEABLE ROADS AND BUNDS, THE SITE WILL GENERALLY BE SURFACED IN A LAYER OF STONE CHIPPINGS ON TOP OF A POROUS SUB-BASE LAYER THAT WILL ACT AS A DRAINAGE BLANKET. THE SSE SPECIFICATION CALLS FOR THIS 725MM SUB-BASE TO HAVE AN ABSORBENCY OF 3x10 -2 /M/S. RAINFALL WILL INFILTRATE INTO THE BLANKET. DUE TO THE SIGNIFICANT CUT AND FILL WORKS, THERE WILL BE A SIGNIFICANT DEPTH OF ABSORBENT GRANULAR MATERIAL OVER A LARGE PORTION OF THE SITE I.E THE FILLED SECTION. THE UNDERLYING ROCK WILL BE CUT AS REQUIRED AND PROCESSED ON-SITE TO BE USED AS ENGINEERED FILL. THE DEPTH OF UNDERLYING PROCESSED FILL WILL BE SEVERAL METRES THICK IN PLACES AND IT IS ANTICIPATED, SUBJECT TO TESTING THIS WILL ALLOW RAINFALL TO BE ABSORBED.
	PAVED AREAS WILL DRAIN DIRECTLY INTO THE PLATFORM. SURFACE WATER FLOWS WILL BE GIVEN INITIAL TREATMENT AS IT PASSES THROUGH THE STONE BLANKET LAYER. SURFACE WATER WILL DRAIN OUT FROM THE SUBSTATION DRAINAGE BLANKET VIA A CHAMBER TO THE NORTH AND TO THE SOUTH INLINE WITH SWECO OVERALL DRAINAGE STRATEGY.
	A SERIES OF FILTER DRAINS ARE PROPOSED, DEPENDING ON THE FINDINGS OF THE SITE INVETIGATION THESE MAYBE OMITTED AT DETAILED DESIGN STAGE.
	FLOWS FROM THE RUNOFF FROM BUILDING ROOFS AND PUMPED FLOWS FROM BUNDS AND TANKER STANDING AREAS WILL BE POSITIVELY DRAINED INTO PIPEWORK WHICH WILL BE SIZED TO PREVENT ANY SURFACE FLOODING DURING A 1 IN 1000 YEAR RETURN PERIOD STORM, PLUS CLIMATE CHANGE. FLOWS TO DOWNSTREAM WATERCOURSES WILL BE RESTRICTED TO THE GREEN FIELD RUNOFF RATE FOR THE AREAS OF THE BUILDINGS AND BUNDS. ANY EXCESS VOLUMES OF STORMWATER WILL BE ATTENUATED IN A DETENTION BASIN/WETLAND POND(S).
ALL	THE PHILOSOPHY OF THE SURFACE WATER DRAINAGE STRATEGY IS IN PRINCIPLE TO MIMIC THE QUALITY AND QUANTITY OF THE RUNOFF FROM THE SITE IN ITS 'GREENFIELD' STATE. IN SO FAR AS IT IS REASONABLE AND PRACTICABLE, WHERE APPROPRIATE ADDITIONAL POST-DEVELOPMENT RUNOFF SHALL BE DISPERSED IN ACCORDANCE WITH LOCAL AUTHORITY, SEPA AND SEWERS FOR SCOTLAND.
	DESIGN EVENT RAIN-FALL SHALL BE BASED ON THE USE OF THE MOST RECENT VERSION OF THE 'FLOOD ESTIMATION HANDBOOK' SPECIFIC TO THE LOCATION OF THE DEVELOPMENT. AN ALLOWANCE FOR CLIMATE CHANGE SHALL BE APPLIED IN ACCORDANCE WITH SEPA CLIMATE CHANGE (CC) ALLOWANCES FOR FLOOD RISK ASSESSMENTS IN LAND USE PLANNING, VERSION 1. AS A MINIMUM, THE SURFACE WATER DRAINAGE SYSTEM WILL FULLY MANAGE SURFACE WATER FLOWS RESULTING
	FROM THE DEVELOPED SITE UP TO THE 1 IN 1000-YEAR + CC RAIN FALL RETURN PERIOD PROTECTION FOR 'CRITICAL EQUIPMENT'. TO REMOVE DOUBT, THIS HAS BEEN ASSUMED TO BE ANY AREA INSIDE THESE SUBSTATION SECURITY FENCE LINE. IN ADDITION, A MINIMUM OF 1 IN 200-YEAR + CC RAIN-FALL RETURN PERIOD PROTECTION WILL BE PROVIDED FOR OFF-SITE FLOODING.
	ANALYSIS IDENTIFIES THE FLOWS FROM THE GREENFIELD SITE WHICH WILL BE COVERED WITH BUILDINGS OR BUNDS/TANKER STANDING AREAS IS 0.6L/S DURING A 1 IN 1 YEAR RETURN PERIOD STORM. THE PROPOSAL IS TO LIMIT THE MAXIMUM FLOW INTO DOWNSTREAM WATERCOURSES FROM THE POSITIVELY DRAINED BUILDINGS AND BUNDS TO 0.6L/S, EVEN DURING 1 IN 200 YEAR RETURN PERIOD STORMS PLUS CC.
	BASED ON THE ABOVE PHILOSOPHY, AN INFODRAINAGE MODEL HAS ESTABLISHED THAT THERE NEEDS TO BE AN ATTENUATION VOLUME OF 300m ³ . A HYDROBRAKE CHAMBER WITH A DISCHARGE RATE OF 0.6L/S SHALL BE PROVIDED ON THE POND OUTFALL, THIS IS TO CATER FOR THE AREA OF THE SITE DIRECTLY WITHIN THE PERIMETER SECURITY FENCE ONLY. FOLLOWING THE MOST INTENSE STORM THAT HAS BEEN MODELLED, THE WATER LEVEL WILL RETURN BACK TO NORMAL IN APPROXIMATELY 48 HOURS.
ALL	INLETS INTO THE SWALES AND INTO THE POND SHALL BE MADE USING PRE-CAST CONCRETE SWALE INLET UNITS. THE OUTLET FROM THE POND SHALL BE A PRE-CAST CONCRETE HEADWALL UNIT WITH A WEIR AND SUMP, HANDRAIL, GATE AND INTEGRATED STEPS FOR EASE OF ACCESS FOR INSPECTION AND MAINTENANCE ACTIVITIES.
	PROVIDING LEVELS OF TREATMENT TO SURFACE WATER FLOWS, WHILST AT THE SAME TIME PROVIDING A NATURAL AND STABLE HABITAT FOR PLANTS AND WILDLIFE. THE PONDS OUTSIDE THE SUBSTATION SHALL BE DESIGNED IN ACCORDANCE WITH SEWERS FOR SCOTLAND 4.0 CLAUSE 2.9.
	CONTAINING OIL WILL BE SITUATED IN IMPERMEABLE BUNDS. BECAUSE THERE MAY BE OIL PRESENT WITHIN WATER WITHIN THESE BUNDS, INTELLIGENT PUMPING SYSTEMS WHICH WILL DETECT THE PRESENCE OF OIL WILL BE USED. THESE WILL CEASE OPERATION IF OIL IS DETECTED. IN ADDITION, FLOWS FROM THESE LOCATIONS WILL PASS THROUGH ABOVE-GROUND OIL SEPARATORS, BEFORE PASSING DOWNSTREAM.
	IN ADDITION, COOLING PLANT CONTAINING GLYCOL WILL ALSO BE HOUSED IN BUNDS. RAINWATER ENTERING THESE BUNDS WILL ALSO BE PUMPED OUT INTO THE SURFACE WATER SYSTEM. IF A PRESSURE DROP IS INDICATED IN THE GLYCOL PIPEWORK, THE SURFACE WATER PUMPS WILL SWITCH OFF ENSURING CONTAMINATED WATER IS RETAINED WITHIN THE COOLER BUND. SURFACE WATER FROM THE POTENTIAL OILY WATER SOURCES WILL DISCHARGE INTO A SEPARATE PIPE TO THAT WHICH
ALL	IS DRAINING THE BUILDING ROOFS ETC. BOTH MAIN DRAIN RUNS WILL ULTIMATELY CONNECT TO SWALES OUTSIDE THE SECURITY FENCELINE. THIS SHALL BE IN ACCORDANCE WITH FIGURE 6.1 OF SP-NET-CIV-502. SURFACE WATER FROM BUILDINGS SHALL ONLY CONNECT INTO THE DRAINAGE SYSTEM DOWNSTREAM OF THE SAMPLE POINT. FROM THIS POINT, A COMMON SWALE WILL CONTINUE TO THE WETLAND POND/DETENTION BASIN.
	WHERE OILY WATER AND SURFACE WATER CARRIER DRAINS ARE USED WITHIN THE SUBSTATION, THE CHAMBERS SHALL BE CONSIDERED AS 'MANHOLES', IN ACCORDANCE WITH SP-NET-CIV-502 THESE CHAMBERS SHALL HAVE 1200mm INTERNAL DIAMETER AND SHALL ALL BE BENCHED. CATCHPITS SHALL NOT BE USED WITHIN THE SUBSTATION.
	FOUL WATER SEWERS FOR SCOTLAND V4.0 STIPULATES THAT ALL GRAVITY SEWER PIPES SHALL BE 150mm INTERNAL DIAMETER AND SHALL BE UPVC. HOWEVER, THE FOUL DRAINAGE HERE DOESN'T CONNECT MULTIPLE PROPERTIES AND THEREFORE NOT
	CONSIDERED TO BE A 'SEWER'. WHERE GRAVITY DRAINS ARE PROVIDED THESE WILL BE 100mm INTERNAL DIAMETER. THE FOUL DRAIN FROM THE BUILDING SHALL DRAIN DIRECTLY INTO A FOUL PUMPING STATION (DUTY/STANDBY). THE PUMPING MAIN SHALL BE 50 DIA. (1200 DEEP TO CROWN) AND SHALL BE PUMPED TO A MANHOLE OUTSIDE THE
	SUBSTATION SECURITY FENCE. FROM THERE FOUL WATER SHALL DRAIN VIA GRAVITY INTO A SEPTIC TANK (ALSO LOCATED OUTSIDE THE SUBSTATION FENCELINE) LOCATED AS CLOSE AS PRACTICALLY POSSIBLE TO THE ENTRANCE FOR EASE OF ACCESS FOR MAINTENANCE. THE OUTFALL FROM THE SEPTIC TANK SHALL DRAIN INTO ANOTHER DUTY/STANDBY PUMPING FROM WHERE IT WILL BE PUMPED TO A FOUL SOAKAGE FIELD. THE SOAKAGE FIELD SHALL BE
SAMP	LOCATED IN AN AREA WHERE THERE ARE SUITABLE DRAINAGE CHARACTERISTICS. ALSO WHERE THE LEVELS PERMIT THE SOAKAGE FIELD TO BE NO GREAT THAN 700mm TO CROWN OF PIPE. ALL IN ACCORDANCE WITH BS 6297 WHICH COVERS 'DEALING WITH DIFFICULT SITES AND GROUND CONDITIONS', THIS MUST BE REFERRED TO WHEN DETERMINING
CHAN FWMI CL 130.	103
IL 129.1	
FWMI	THAT CUT-OFF DITCHES ARE CONSTRUCTED WHICH WILL DIRECT FLOWS DURING CONSTRUCTION INTO THE POND. THE POND WILL HAVE A MINIMUM DEPTH OF 300mm AT ALL TIMES AND THEREFORE THIS WILL PROVIDE SUFFICIENT ROOM FOR SILTS TO SETTLE. THE POND WILL BE SUBJECT TO REGULAR INSPECTION TO ENSURE THAT ANY BUILDUP OF SILTS
CL 130.	500 WITH THE ENVIRONMENTAL QUALITY STANDARD FOR SURFACE WATER, I.E. 40MG/L OF SEDIMENT. IN ADDITION TO THE
	A MONITORING REGIME SHOULD BE DEVELOPED FOR THE WATER BEING DISCHARGED TO TRACK TURBIDITY, PH AND OVERALL QUALITY. IN THE EVENT THAT QUALITY DECREASES, FURTHER TREATMENT MEASURES MAY NEED TO BE PUT IN PLACE.
FWMI CL 130. IL 129.3	500 TANKER STAND AREAS PROVIDED AS SHOWN
OUTFALL	
IAMBER	
	DRAWING STATUS: FOR REVIEW / FOR CONSTRUCTION / AS-BUILT DRAWING TO BE PRINTED IN COLOUR ONLY
<u>/EL</u>	Customer Project Scottish & Southern GREENS 400kV SUBSTATION
	SIEMENS Dam Title OVERVIEW & PHILOSOPHY
	Joint Venture Substation Delivery
Ν	Framework -
w	E Client DRG NO. GRNS4-LT379-SEBAM-DRAI-XX-LAY-C-0001 Contractor DRG No.
S	Designed Drawn Checked Approved Date Scale Size Sheet 01 Revision M.Patterson H.Hooper G.Hooper N.Patterson June 2024 1:750 A0 of 01 06

Appendix 4 Greenfield Run-Off Calculations

W A Fairhurst & Partners		Page 1
225 Bath Street		
Glasgow		
G2 4GZ		Viero
Date 16/05/2024 09:26	Designed by eibryamova	Micro
File	Checked by	Drainage
-	Source Control 2020.1.3	
Micro Drainage	Source Control 2020.1.3	
<u>IH 124</u>	Mean Annual Flood	
	Input	
Return Period (year		
	a) 50.000 Urban 0.000 m) 840 Region Number Region 1	
	Results 1/s	
-	BAR Rural 112.8 BAR Urban 112.8	
ç	200 years 316.9	
	Q1 year 95.9	
	Q2 years 102.5	
	Q5 years 135.3	
	Q10 years 163.0 Q20 years 192.7	
	Q25 years 192.7 Q25 years 203.9	
	Q30 years 213.1	
	Q50 years 239.6	
	2100 years 279.7	
	2200 years 316.9	
	2250 years 329.3 .000 years 409.4	
×-	Jobb years los.	
~1 ^ ^	0.0000 Tara and	
©198	2-2020 Innovyze	

Appendix 5 MicroDrainage Source Control Calculations

Glasgow G2 4GZ Data 24/10/2024 16:10	Fairhurst						Page 1		
S2 462 Designed by rduncan Checked by Designed by rduncan Checked by Designed by rduncan Checked by Innovyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+37%) Stom Max Max Max Status innovyze Source Control 2020.1.3 Status Status Stom Max Max Max Status innovyze Status Status Status Stom Max Max Max Status Stom Max Max Status Status innovyze Status Status Status Status Stom Max Max Max Status Status inno Summer 98.640 0.340 43.4 44.0 1335.5 0.K Status 120 min Summer 99.019 0.519 44.0 14335.5 0.K Status Status 240 min Summer 99.175 0.675 44.0 1437.1 0.K Status Status 360 min Summer 99.371 0.871 44.0 2293	225 Bath Street								
Storm Rain Flooded Discharge Time 135 min Summer 99.355 1.065 44.0 27377.9 0 K 1400 min Summer 99.555 1.065 44.0 27377.9 0 K 15 min Summer 99.355 1.065 44.0 1428.2 0 K 100 min Summer 98.490 0.340 43.4 8736.1 0 K 100 min Summer 98.760 0.60 44.0 1414.8 0 K 120 min Summer 99.19 0.519 44.0 13335.6 0 K 130 min Summer 99.079 0.575 44.0 17337.1 0 K 1400 min Summer 99.315 0.815 44.0 22391.4 0 K 1440 min Summer 99.310 0.815 44.0 27377.9 0 K 1440 min Summer 64.310 0.0 1728.2 133 13	Glasgow								
Storm Rain Flooded Discharge Time Control Cont	G2 4GZ						Micco		
Die Greens Storage Estimate Checked by Source Control 2020.1.3 Source Control 2020.1.4 Source Control 2020.1.4 Source Control 2020		16:10	Desi	aned by r	duncan				
Source Control 2020.1.3 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+37%) Storm Max Max Max Max Max Max Status Event Max Max Max Max Status Storm Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max <td colspan="2" max<<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Urainac</td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Urainac</td>								Urainac
Summary of Results for 200 year Return Period (+37%) Storm Max Max Max Max Max Max Status Event Level Depth Control Volume Status 15 <min summer<="" td=""> 98.699 0.199 28.3 5127.0 0 K 30<min 98.760<="" summer="" td=""> 0.260 40.0 6689.9 0 K 60<min 98.760<="" summer="" td=""> 0.260 40.0 6689.9 0 K 120<min 98.760<="" summer="" td=""> 0.261 40.0 6689.9 0 K 120<min 98.710<="" summer="" td=""> 0.579 44.0 11314.8 0 K 180<min 99.019<="" summer="" td=""> 0.519 44.0 1429.5 0 K 600<min 99.175<="" summer="" td=""> 0.675 44.0 19295.9 0 K 600<min 99.10<="" summer="" td=""> 0.815 44.0 1929.0 0 K 600<min 99.371<="" summer="" td=""> 0.85 44.0 2421.4 0 K 960<min 104.175<="" summer="" td=""> 0.0 1728.2 133 140<min 104.175<="" summer="" td=""> 0.0 1728.2 133 <t< td=""><td></td><td>age lotimate</td><td></td><td></td><td>1 2020</td><td>1 3</td><td></td></t<></min></min></min></min></min></min></min></min></min></min></min>		age lotimate			1 2020	1 3			
Storn EventMax LevelMax Net (n)Max ControlMax Volume (n,3)Status Status15 min Summer 60 min Summer 98.7600.26040.06689.9 40.00K30 min Summer 98.7600.24040.06689.9 40.0K10 min Summer 98.7400.3408376.1 44.0K120 min Summer 	11110 v y 20		5041			1.0			
Event Level Berls Current (x) Value (x) 15 min Summer 98.609 0.260 5127.0 0 K 15 min Summer 98.609 0.260 43.04 8736.1 0 K 10 min Summer 98.740 0.240 44.0 11414.8 K K 120 min Summer 99.079 0.579 44.0 12335.6 K K 240 min Summer 99.075 0.751 44.0 12925.9 K K 260 min Summer 99.315 0.875 1.410 12925.9 K K 260 min Summer 99.315 0.875 44.0 12925.9 K K 260 min Summer 99.315 0.875 44.0 12925.9 K K 260 min Summer 99.315 0.875 44.0 2421.2 K K 260 min Summer 199.450 1.955 44.0 24321.4 K K 1440 min Summer 199.457 0.95	Sur	mmary of Result	s for 20)0 year R	eturn Pe	riod (+37%)			
(m)(m)(1/s)(m²)15min Summer98.6990.19928.35127.00K30min Summer98.7000.26040.06689.90K60min Summer98.9440.44444.011414.80K120min Summer99.0190.51944.013335.60K120min Summer99.0790.57944.013335.10K130min Summer99.1750.67544.017337.10K400min Summer99.3150.81544.022391.40K960min Summer99.3501.06544.027377.90K140min Summer99.5651.06544.027377.90K15min Summer104.1750.01728.213330min Summer104.1750.01728.213415min Summer19.3510.8150.152.017410min Summer104.1750.01728.213330min Summer104.170.05326.0174120min Summer19.3510.810.07338.8230130min Summer19.2590.07182.0346140min Summer19.2590.07182.0346150min Summer19.2590.07182.0134160min Summer19.2590.0 <td></td> <td>Storm</td> <td>Max Ma</td> <td>ax Max</td> <td>Max</td> <td>Status</td> <td></td>		Storm	Max Ma	ax Max	Max	Status			
15 min Summer 98.760 0.260 40.0 669.9 0 K 30 min Summer 98.840 0.340 43.4 8736.1 0 K 120 min Summer 98.940 0.444 44.0 1141.8 0 K 120 min Summer 99.019 0.519 44.0 1441.8 0 K 120 min Summer 99.019 0.519 44.0 1441.8 0 K 240 min Summer 99.0179 0.579 44.0 14379.5 0 K 360 min Summer 99.175 0.675 44.0 19295.9 0 K 600 min Summer 99.211 0.815 44.0 20948.0 0 K 720 min Summer 99.310 0.950 44.0 24421.2 0 K 960 min Summer 99.565 1.065 44.0 27377.9 0 K 1440 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 29.371 0.0 5326.0 174 120 min Summer 29.371 0.0 6738.8 230 130 min Summer 29.371 0.0 7182.0 346 310 min Summer 15.046 0.0		Event	Level Dep	pth Control	L Volume				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(m) (1	m) (l/s)	(m³)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15 min Summer	98.699 0.	199 28.3	3 5127.0	ОК			
120minSummer98.9440.44444.011414.80K180minSummer90.0190.51944.011333.50K240minSummer99.0790.57944.014733.10K360minSummer99.1750.67544.017337.10K480minSummer99.2510.75144.01295.90K600minSummer99.3150.81544.022391.40K720minSummer99.5651.06544.027377.90K1440minSummer99.5651.06544.027377.90K1440minSummer104.1750.01728.213330minSummer29.3710.05326.0174120minSummer29.3710.05326.0174120minSummer29.3710.07188.8230130minSummer29.3710.06338.8230120minSummer29.3710.07182.0346120minSummer29.3710.07182.0346120minSummer19.2590.07182.0346120minSummer19.2590.07182.0346120minSummer19.2590.07182.0346									
180minSummer99.0190.51944.013335.60K240minSummer99.0790.57944.014379.50K360minSummer99.1750.67544.017337.10K480minSummer99.3150.81544.019295.90K600minSummer99.3150.81544.022391.40K720minSummer99.3100.87144.022421.20K90minSummer99.5651.06544.027377.90K1440minSummer19.5651.06544.027377.90K1440minSummer104.1750.01728.213330minSummer29.3100.05326.0174120minSummer29.3100.06738.8230180minSummer29.2940.07180.7288240minSummer19.2590.07182.0346360minSummer19.2590.07182.034630minSummer19.2590.07182.034630minSummer19.2590.07182.034630minSummer19.2590.07182.034630minSummer19.2590.06839.8578600<		60 min Summer	98.840 0.3			O K			
240 min Summer 99.079 0.579 44.0 14879.5 0 K 360 min Summer 99.175 0.675 44.0 17337.1 0 K 480 min Summer 99.251 0.751 44.0 12925.0 0 K 600 min Summer 99.315 0.815 44.0 20948.0 0 K 720 min Summer 99.371 0.871 44.0 22391.4 0 K 960 min Summer 99.555 1.065 44.0 27377.9 0 K 1440 min Summer 99.565 1.065 44.0 27377.9 0 K 30 min Summer 99.565 1.065 44.0 27377.9 0 K 1440 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 29.371 0.0 6738.8 230 180 min Summer 29.371 0.0 6738.8 230 190 min Summer 19.259 0.0 7180.7 288 240 min Summer 19.259 0.0 7180.7 288 240 min Summer 19.259 0.0 6839.8 578 600 min Summer 15.046 0.0 7035.6 462		120 min Summer	98.944 0.	444 44.0) 11414.8	ОК			
360 min Summer 99.175 0.675 44.0 17337.1 0 K 400 min Summer 99.251 0.751 44.0 12925.9 0 K 600 min Summer 99.315 0.815 44.0 22391.4 0 K 960 min Summer 99.450 0.950 44.0 24421.2 0 K 960 min Summer 99.565 1.065 44.0 27377.9 0 K 1440 min Summer 199.565 1.065 44.0 27377.9 0 K 15 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 22.946 0.0 7180.7 288 240 min Summer 19.259 0.0 7180.7 288 240 min Summer 19.259 0.0 7180.7 288 240 min Summer 19.269 0.0 6839.8 578 600 min Summer 19.259 0.0 6839.8 578 600 min Summer 11.024 0.0 6625.3 696 720 min Summer 11.024		180 min Summer	99.019 0.	519 44.0	13335.6	ОК			
480 min Summer 99.251 0.751 44.0 19295.9 0 K 600 min Summer 99.371 0.815 44.0 22391.4 0 K 720 min Summer 99.371 0.871 44.0 22391.4 0 K 960 min Summer 99.450 0.905 44.0 24421.2 0 K 1440 min Summer 99.565 1.065 44.0 27377.9 0 K Immer Memory Mathematical Summer Memory Mathematical Summer Memory Mathematical Summer Memory M						O K			
600 min Summer 99.315 0.815 44.0 20948.0 0 K 720 min Summer 99.371 0.871 44.0 22391.4 0 K 960 min Summer 99.450 0.950 44.0 24421.2 0 K 1440 min Summer 99.565 1.065 44.0 27377.9 0 K 1440 min Summer 104.175 Volume Volume (m3) Volume (m3) Volume (m3) 15 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 29.371 0.0 6738.8 230 120 min Summer 22.946 0.0 7180.7 288 240 min Summer 15.046 0.0 7035.6 462 460 min Summer 12.629 0.0 6839.8 578 600 min Summer 11.024 0.0 639.8 578 600 min Summer 12.629 0.0 6386.3 814 960 min Summer 8.156 0.0 6366.3 814									
Storm Rain Flooded Discharge Time-Feak 1440 min Summer 99.565 1.065 44.0 24421.2 0 K 1440 min Summer 99.565 1.065 44.0 27377.9 0 K Image: Storm Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 29.371 0.0 6738.8 230 120 min Summer 19.259 0.0 7182.0 346 360 min Summer 11.024 0.0 6339.8 578 600 min Summer 11.024 0.0 6385.3 814 960 min Summer 8.156 0.0 6066.6 1048									
960 min Summer 99.450 0.950 1440 min Summer 99.565 1.065 44.0 27377.9 0 K Storm Rain Flooded Discharge Time-Peak (mm/hr) Volume (m3) 15 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 22.946 0.0 7180.7 288 240 min Summer 15.046 0.0 7182.0 346 360 min Summer 15.046 0.0 7182.0 346 360 min Summer 15.046 0.0 7035.6 462 480 min Summer 12.629 0.0 6839.8 578 600 min Summer 11.024 0.0 6625.3 696 720 min Summer 8.156 0.0 6006.6 1048									
Storm Rain Flooded Discharg Time-Peak Event mm/hr) Volume Volume (mins) 15 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 29.371 0.0 6738.8 230 180 min Summer 19.259 0.0 7182.0 346 360 min Summer 15.046 0.0 7035.6 462 480 min Summer 12.629 0.0 6839.8 578 600 min Summer 12.024 0.0 6625.3 696 720 min Summer 9.866 0.0 6386.3 814 960 min Summer 8.156 0.0 6006.6 1048									
Storm Rain Flooded Discharge Time-Peak Event Volume Volume (mins) 15 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 44.792 0.0 5326.0 174 120 min Summer 29.371 0.0 6738.8 230 180 min Summer 22.946 0.0 7180.7 288 240 min Summer 15.046 0.0 7035.6 462 480 min Summer 15.046 0.0 6339.8 578 600 min Summer 11.024 0.0 6625.3 696 720 min Summer 8.156 0.0 6006.6 1048									
Event(mm/hr)Volume (m³)Volume (m³)(mins)15 min Summer104.1750.01728.213330 min Summer68.3100.02505.714660 min Summer44.7920.05326.0174120 min Summer29.3710.06738.8230180 min Summer19.2590.07180.7288240 min Summer19.2590.07035.6462360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048									
Event(mm/hr)Volume (m³)Volume (m³)(mins)15 min Summer104.1750.01728.213330 min Summer68.3100.02505.714660 min Summer44.7920.05326.0174120 min Summer29.3710.06738.8230180 min Summer19.2590.07180.7288240 min Summer19.2590.07035.6462360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048									
(m ³) (m ³) 15 min Summer 104.175 0.0 1728.2 133 30 min Summer 68.310 0.0 2505.7 146 60 min Summer 44.792 0.0 5326.0 174 120 min Summer 29.371 0.0 6738.8 230 180 min Summer 22.946 0.0 7180.7 288 240 min Summer 19.259 0.0 7182.0 346 360 min Summer 15.046 0.0 7035.6 462 480 min Summer 12.629 0.0 6839.8 578 600 min Summer 11.024 0.0 6625.3 696 720 min Summer 9.866 0.0 6386.3 814 960 min Summer 8.156 0.0 6006.6 1048		Storm	Pain		i sebargo ("imo_Doals			
30 min Summer68.3100.02505.714660 min Summer44.7920.05326.0174120 min Summer29.3710.06738.8230180 min Summer22.9460.07180.7288240 min Summer19.2590.07182.0346360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048					-				
30 min Summer68.3100.02505.714660 min Summer44.7920.05326.0174120 min Summer29.3710.06738.8230180 min Summer22.9460.07180.7288240 min Summer19.2590.07182.0346360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048				Volume	Volume				
60 min Summer44.7920.05326.0174120 min Summer29.3710.06738.8230180 min Summer22.9460.07180.7288240 min Summer19.2590.07182.0346360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event	(mm/hr)	Volume (m³)	Volume (m ³)	(mins)			
180 min Summer22.9460.07180.7288240 min Summer19.2590.07182.0346360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event 15 min Summe:	(mm/hr)	Volume (m ³) 0.0	Volume (m ³) 1728.2	(mins) 133			
240 min Summer19.2590.07182.0346360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event 15 min Summe: 30 min Summe:	(mm/hr) (mm/hr) (104.175 (8.310	Volume (m ³) 0.0 0.0	Volume (m ³) 1728.2 2505.7	(mins) 133 146			
360 min Summer15.0460.07035.6462480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event 15 min Summe: 30 min Summe: 60 min Summe:	(mm/hr) c 104.175 c 68.310 c 44.792	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 1728.2 2505.7 5326.0	(mins) 133 146 174			
480 min Summer12.6290.06839.8578600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe:	(mm/hr) (mm/hr)	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7	(mins) 133 146 174 230 288			
600 min Summer11.0240.06625.3696720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 240 min Summe:	(mm/hr) (m	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0	(mins) 133 146 174 230 288 346			
720 min Summer9.8660.06386.3814960 min Summer8.1560.06006.61048		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 240 min Summe: 360 min Summe:	(mm/hr) (mm/h	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6	(mins) 133 146 174 230 288 346 462			
960 min Summer 8.156 0.0 6006.6 1048		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 240 min Summe: 360 min Summe: 480 min Summe:	(mm/hr) (mm/hr	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8	(mins) 133 146 174 230 288 346 462 578			
		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 240 min Summe: 360 min Summe: 480 min Summe: 600 min Summe:	(mm/hr) (mm/	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3	(mins) 133 146 174 230 288 346 462 578 696			
		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 360 min Summe: 480 min Summe: 600 min Summe: 720 min Summe:	(mm/hr) (mm/hr) (mm/hr) (104.175 (8.310 (44.792 (29.371 (22.946 (19.259 (15.046 (12.629 (11.024 (9.866)	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3 6386.3	(mins) 133 146 174 230 288 346 462 578 696 814			
		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 360 min Summe: 480 min Summe: 600 min Summe: 960 min Summe:	(mm/hr) (mm/hr) (mm/hr) (104.175 (68.310 (44.792 (29.371 (22.946 (19.259 (19.259 (15.046 (12.629 (11.024 (9.866 (8.156)	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3 6386.3 6006.6	(mins) 133 146 174 230 288 346 462 578 696 814 1048			
		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 360 min Summe: 480 min Summe: 600 min Summe: 960 min Summe:	(mm/hr) (mm/hr) (mm/hr) (104.175 (68.310 (44.792 (29.371 (22.946 (19.259 (19.259 (15.046 (12.629 (11.024 (9.866 (8.156)	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3 6386.3 6006.6	(mins) 133 146 174 230 288 346 462 578 696 814 1048			
		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 360 min Summe: 480 min Summe: 600 min Summe: 960 min Summe:	(mm/hr) (mm/hr) (mm/hr) (104.175 (68.310 (44.792 (29.371 (22.946 (19.259 (19.259 (15.046 (12.629 (11.024 (9.866 (8.156)	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3 6386.3 6006.6	(mins) 133 146 174 230 288 346 462 578 696 814 1048			
		Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 360 min Summe: 480 min Summe: 720 min Summe: 960 min Summe: 1440 min Summe:	(mm/hr) (mm/hr) (mm/hr) (104.175 (8.310 (44.792 (29.371 (22.946 (19.259 (19.259 (15.046 (12.629 (11.024 (9.866 (8.156 (6.236)	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3 6386.3 6006.6 5842.7	(mins) 133 146 174 230 288 346 462 578 696 814 1048			
Note: Source Control Quick Storage Estimates up to 1440 min. duration only.	Note: Source Control Qui	Event 15 min Summe: 30 min Summe: 60 min Summe: 120 min Summe: 180 min Summe: 360 min Summe: 480 min Summe: 720 min Summe: 960 min Summe: 1440 min Summe:	(mm/hr) (mm/hr) (mm/hr) (104.175 (8.310 (44.792 (29.371 (22.946 (19.259 (19.259 (15.046 (12.629 (11.024 (9.866 (8.156 (6.236)	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 1728.2 2505.7 5326.0 6738.8 7180.7 7182.0 7035.6 6839.8 6625.3 6386.3 6006.6 5842.7	(mins) 133 146 174 230 288 346 462 578 696 814 1048			

						Page 2
225 Bath Street						
Glasgow						
G2 4GZ						Micco
Date 24/10/2024 16	:10	Desi	gned by r	duncan		- Micro
File Greens Storag			ked by	aanoan		Drainac
	e Estimate		ce Contro	1 2020	1 2	-
Innovyze		5001		1 2020.	1.5	
Summa	ary of Resul	ts for 20)0 year Re	eturn Pe	eriod (+37%)	
	Storm	Max M	ax Max	Max	Status	
	Event	Level Dep	pth Control	Volume		
		(m) (1	m) (l/s)	(m³)		
	15 min Winter	98.723 0.	223 33.4	5735.6	ОК	
	30 min Winter			7489.4	0 K	
	60 min Winter			9797.2	ОК	
1	20 min Winter	98.999 0.	499 44.0	12817.1	ОК	
1	.80 min Winter	99.083 0.	583 44.0	14983.9	O K	
2	240 min Winter	99.151 0.	651 44.0	16726.2	O K	
3	240 min Winter 360 min Winter	99.259 0.	759 44.0	19502.1	O K	
4	180 min Winter	99.345 0.	845 44.0	21722.5	O K	
6	00 min Winter	99.418 0.	918 44.0	23600.0	O K	
	20 min Winter	99.481 0.	981 44.0	25217.2		
	60 min Winter				О К	
T -	40 min Winter	99.700 I.	200 44.0	50050.2	Flood Risk	
	Storm	Rain	Flooded Di	-		
	Storm Event			scharge ' <i>T</i> olume (m³)	Time-Peak (mins)	
		(mm/hr)	Volume V	/olume		
	Event	(mm/hr) er 104.175	Volume V (m³)	/olume (m ³) 2033.2 2875.3	(mins)	
	Event 15 min Winte 30 min Winte 60 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792	Volume V (m ³) 0.0 0.0 0.0	Tolume (m ³) 2033.2 2875.3 5966.6	(mins) 133 146 174	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Tolume (m ³) 2033.2 2875.3 5966.6 7149.7	(mins) 133 146 174 230	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7	(mins) 133 146 174 230 286	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	701ume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2	(mins) 133 146 174 230 286 342	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7	(mins) 133 146 174 230 286 342 456	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2	(mins) 133 146 174 230 286 342 456 572	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0	(mins) 133 146 174 230 286 342 456 572 688	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8	(mins) 133 146 174 230 286 342 456 572 688 802	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8 6174.0	(mins) 133 146 174 230 286 342 456 572 688 802 1030	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8	(mins) 133 146 174 230 286 342 456 572 688 802	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8 6174.0	(mins) 133 146 174 230 286 342 456 572 688 802 1030	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8 6174.0	(mins) 133 146 174 230 286 342 456 572 688 802 1030	
	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8 6174.0	(mins) 133 146 174 230 286 342 456 572 688 802 1030	
Note: Source Control Quick	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 140 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156 er 6.236	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8 6174.0 6225.2	(mins) 133 146 174 230 286 342 456 572 688 802 1030	
Note: Source Control Quick	Event 15 min Winte 30 min Winte 60 min Winte 120 min Winte 140 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte	(mm/hr) er 104.175 er 68.310 er 44.792 er 29.371 er 22.946 er 19.259 er 15.046 er 12.629 er 11.024 er 9.866 er 8.156 er 6.236	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	/olume (m ³) 2033.2 2875.3 5966.6 7149.7 7249.7 7182.2 6964.7 6699.2 6395.0 6217.8 6174.0 6225.2	(mins) 133 146 174 230 286 342 456 572 688 802 1030	

Appendix 6 Initial MicroDrainage Model Summary & Results

Fairhurst 225 Bath Street Glasgow

Date 24/10/2024 15:32

File 20241024 PermDrain.mdx

Checked by Network 2020.1

Designed by apeters

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland Return Period (years) 200 PIMP (%) 100 M5-60 (mm) 14.000 Add Flow / Climate Change (%) 37 Ratio R 0.200 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr)200Maximum Backdrop Height (m) 1.500Maximum Time of Concentration (mins)30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.840 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000
Hot Start (mins)MADD Factor * 10m³/ha Storage 2.000
Inlet Coefficient 0.800 0 Flow per Person per Day (l/per/day) 0.000 Hot Start Level (mm) Run Time (mins) 60 Manhole Headloss Coeff (Global) 0.500 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 8 Number of Storage Structures 28 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR	Profile Type Winte	er
Return Period (years)		200	Cv (Summer) 0.7	5 <mark>0</mark>
Region	Scotland and	Ireland	Cv (Winter) 0.8	40
M5-60 (mm)		15.200	Storm Duration (mins)	30
Ratio R		0.250		

Drainade

Mirro

Page 0

Innovyze

G2 4GZ

Fairhurst								Pao	re 1
225 Bath									
Glasgow	DUICCU								
G1a3G0w G2 4GZ									
Date 24/10	0/202/ 1	5.32		Design	ed by ape	tors			licro
		mDrain.mdx		Checked		CEIS			rainage
	1024_Per				k 2020.1				<u> </u>
Innovyze				Networ	K 2020.1				
			Onl	ine Contro	ols for S	torm			
	Hydro	-Brake® Opt	imum Man	hole: 31,	DS/PN: 1	.030, Vol	ume (m³): 4	305.7	
				Unit Refere	nce MD-SHE	-0231-2900-	1200-2900		
				esign Head			1.200		
			Des	ign Flow (1 Flush-F		C	29.0 alculated		
						ise upstrea			
				Applicat	ion		Surface		
				Sump Availa			Yes		
			Tm	Diameter (,		231 115.546		
		Minimum (vert Level Diameter (. ,		115.546 300		
			-	Diameter (1800		
	Control	Points	Head (m)	Flow (l/s)	Cont	rol Points	Head (m) Flow (1/s)
Des	ign Point	(Calculated)		29.0		Kick-			24.6
		Flush-Flo™	0.403	28.9	Mean Flow	over Head F	Range	-	24.4
Optimum a	as specifi	alculations h ed. Should a routing calc	nother typ	e of contro	l device o	-	-	-	
Depth (m)	Flow (l/s) Depth (m)	Flow (l/s)		Flow (l/s)	Depth (m)	Flow (l/s) D	epth (m)	Flow (l/s)
0.100	7.		26.1		37.0	4.000	51.8	7.000	67.9
0.200 0.300	23. 28.		26.6 29.0		38.8 40.4	4.500 5.000	54.8 57.7	7.500 8.000	70.2 72.5
0.400	28.		31.2	2.400	40.4	5.500	60.4	8.500	72.5
0.500	28.		33.3		45.0	6.000	63.0	9.000	76.7
0.600	28.		35.2		48.5		65.5	9.500	78.8
	Hydro	-Brake® Op	timum Mar	nhole: 48,	DS/PN: 2	2.015, Vol	ume (m³):	176.3	
				Unit Refere	nce MD-SHE	-0174-1540-	1200-1540		
				esign Head		01/4 1040	1.200		
				ign Flow (l			15.4		
				Flush-F	lom	C	alculated		
				Object		ise upstrea	-		
				Applicat			Surface		
				Sump Availa Diameter (Yes 174		
			In	vert Level			105.815		
		Minimum C		Diameter (225		
		Suggest	ed Manhole	Diameter (mm)		1500		
	Control	Points	Head (m)	Flow (l/s)	Cont	rol Points	Head (m) Flow (l/s)
Des	ign Point	(Calculated) Flush-Flo ^m		15.4 15.4	Mean Flow	Kick- over Head F			12.8 13.2
Optimum a	as specifi	alculations h ed. Should a routing calc	nother typ	e of contro	l device o	-	-	-	
	-) Depth (m)				Depth (m)	Flow (1/e)	epth (m)	Flow (1/=)
0.100 0.200	6. 14.		15.4 15.2	0.800	13.0 14.1	1.400 1.600	16.6 17.7	2.000 2.200	19.6 20.5
0.300	15.		14.8	1.200	15.4	1.800	18.7	2.200	20.3
		1					I		

								Pa	age 2
25 Bath Str	reet								
lasgow									
2 4GZ									Micro
ate 24/10/2					d by ape	ters			Drainac
ile 2024102	4_Perm	nDrain.mdx		Checked					Brainac -
nnovyze				Network	2020.1				
	<u>Hydro</u>	-Brake® Opt	timum Manh	nole: 48,	DS/PN: 2	.015, Vol	Lume (m³):	: 176.3	
Depth (m) Flo	ow (l/s)	Depth (m)	Flow (l/s)	Depth (m) F	?low (l/s)	Depth (m)	Flow (l/s)	Depth (m) Flow (l
2.600	22.3	4.000	27.4	5.500	31.9	7.000	35.8	8.50	0 3
3.000	23.8		29.0	6.000	33.3		37.1		0 4
3.500	25.7	5.000	30.5	6.500	34.6	8.000	38.2	9.50	0 4
<u>F</u>	Hydro-1	Brake® Opt:	imum Manho	ole: 60, D	DS/PN: 4.	010, Volu	ume (m³):	19132.1	
			U	nit Referen	ice MD-SHE-	-0165-1360-	1200-1360		
				sign Head (1.200		
			Desi	gn Flow (1/ Flush-Fl		C	13.6 alculated		
						lse upstrea			
				Applicati			Surface		
				ump Availab			Yes		
				Diameter (m			165		
		Minimum	Inv Outlet Pipe	ert Level (Diamotor (m	. ,		105.439 225		
			ed Manhole				1500		
c	Control	Points	Head (m) H	low (1/s)	Conti	col Points	Head	(m) Flow	(1/s)
-								(,	(_/ _/
Decim		(Colorlated)	1 200	12 6		Viole		0.01	11 0
Design The hydrolog		(Calculated) Flush-Flo™	0.364	I		over Head I	Range	801 - the Hydr	11.2 11.7
The hydrolog Optimum as s then these s	gical ca specifie storage	Flush-Flo™ clculations h d. Should a routing calc	0.364 nave been ba another type culations wi	13.6 sed on the of control ll be inval	Head/Disch L device ot Lidated	over Head H harge relat ther than a	Range ionship for Hydro-Brak	- the Hydr e Optimum	11.7 co-Brake® n® be util
The hydrolog Optimum as s then these s Depth (m) Flo	gical ca specifie storage sw (l/s)	Flush-Flo ^m clculations h d. Should a routing calc Depth (m) 1	• 0.364 have been ba another type culations wi Flow (1/s)	13.6 1 sed on the of control 11 be inval Depth (m) F	Head/Disch L device ot Lidated Flow (1/s)	over Head 1 harge relat ther than a Depth (m)	Range ionship for Hydro-Brak Flow (l/s)	- the Hydr ce Optimum Depth (m)	11.7 co-Brake® n® be util) Flow (1 ,
The hydrolog Optimum as s then these s Depth (m) Flo 0.100	gical ca specifie storage bw (l/s) 5.9	Flush-Flo ^m alculations h ad. Should a routing calc Depth (m) 1 0.800	 0.364 aave been baanother type culations wi Flow (1/s) 11.3 	13.6 sed on the of control ll be inval Depth (m) F 2.000	Head/Disch L device of Lidated Flow (1/s) 17.3	over Head 1 harge relat ther than a Depth (m) 4.000	Range ionship for Hydro-Brak Flow (1/s) 24.1	- the Hydr ce Optimum Depth (m) 7.000	11.7 TO-Brake® TO be util) Flow (1) 0 3
The hydrolog Optimum as s then these s Depth (m) Flo	gical ca specifie storage SW (l/s)	Flush-Flo ^m clculations h d. Should a routing calc Depth (m) 1 0.800 1.000	• 0.364 have been ba another type culations wi Flow (1/s)	13.6 1 sed on the of control 11 be inval Depth (m) F	Head/Disch L device ot Lidated Flow (1/s)	over Head 1 harge relat ther than a Depth (m)	Range ionship for Hydro-Brak Flow (l/s)	- the Hydr ce Optimum Depth (m)	11.7 TO-Brake® We be util) Flow (1) 0 3 0 3.
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200	gical ca specifie storage bw (l/s) 5.9 12.8	Flush-Flo ^m alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200	 0.364 ave been baanother type culations wi Flow (1/s) 11.3 12.5 	13.6 sed on the of control ll be inval Depth (m) F 2.000 2.200	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1	over Head 1 harge relat ther than a Depth (m) 4.000 4.500	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5	- the Hydr ce Optimum Depth (m) 7.000 7.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600	• 0.364 • 0.364 • another type • culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6	13.6 1 sed on the of control 11 be inval Depth (m) E 2.000 2.200 2.400 2.600 3.000	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0	over Head 1 harge relat ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400	gical ca specifie storage 5.9 12.8 13.5 13.6	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600	 0.364 ave been baanother type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6	over Head 1 harge relat ther than a Depth (m) 4.000 4.500 5.000 5.500	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600	 0.364 ave been baanother type culations with the second state of the second stat	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6	over Head 1 harge relat ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	 0.364 ave been banother type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 cimum Manh U 	13.6 1 sed on the of control 11 be inval Depth (m) E 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78,	Head/Disch l device of lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6	Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	<pre>4 0.364 aave been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 cimum Manh U De</pre>	13.6 1 sed on the of control 11 be inval Depth (m) E 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78, 2 nit Referen sign Head (Head/Disch l device of lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 ince MD-SHE- (m)	Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	<pre>4 0.364 aave been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 cimum Manh U De</pre>	13.6 1 sed on the of control 11 be inval Depth (m) E 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78,	Head/Disch l device of lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 ince MD-SHE- (m) 's)	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	<pre>4 0.364 aave been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 cimum Manh U De</pre>	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78, 2 nit Referen sign Head (gn Flow (1/	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 nce MD-SHE- m) 's) .o™	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	4 0.364 have been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 timum Manh U Desi	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78, 2 nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 nce MD-SHE- (m) (s) .0 TM .ve Minimi	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	4 0.364 have been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 timum Manh U Desi	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78, 1 nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 nce MD-SHE- (m) (s) .0 TM .ve Minimi	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo™ alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800	4 0.364 have been ba nother type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 timum Manh U Desi	13.6 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 Ole: 78, 1 nit Referent sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab Diameter (m)	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 nce MD-SHE- (m) 's) .o ^m .ve Minimi .on Dle m)	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes 219	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800 Brake® Opt	4 0.364 have been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 timum Manh U Desi S Inv	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 Ole: 78, nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab Diameter (m	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 Composition (s) .o ^m .ve Minimi .on Dele m) (m)	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes 219 114.148	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo [™] Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800 Brake® Opt Minimum O	4 0.364 have been ba nother type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 timum Manh U Desi	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 Ole: 78, nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab Diameter (m ert Level (Diameter (m	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 MD-SHE- (m) (s) .0 ^m .ve Minimi .on Dle m) (m) m)	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes 219	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® TO be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.5 13.6 13.4 13.1	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800 Brake® Opt Minimum O Suggest	4 0.364 have been ba another type culations wi Flow (1/s) 11.3 12.5 13.6 14.6 15.6 16.5 cimum Manh U Desi S Inv	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 Ole: 78, nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab Diameter (m ert Level (Diameter (m	Head/Disch L device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 DS/PN: 6 DS/PN: 6 MD-SHE- (m) (s) .0 ^m .ve Minimi .on ble m) (m) m) m)	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 .016, Vol	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes 219 114.148 300 1500	- the Hydr ce Optimum 7.000 7.500 8.000 8.500 9.000 9.500	11.7 TO-Brake® 10 be util) Flow (1. 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.9 13.0 13.1 Hydro-	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800 Brake® Opt Minimum O Suggest	 a 0.364 ave been baanother type culations with the second state of t	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78, 2 nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab Diameter (m crt Level (Diameter (m Clameter (m Clameter (m) State (1/s) 25.8	Head/Disch I device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 DS/PN: 6 DS/PN: 6 Contention	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 0.016, Vol -0219-2580- Case upstrea	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes 219 114.148 300 1500 Head -Flo® 0.	- the Hydr ce Optimum 7.000 7.500 8.000 9.000 9.500 1662.7	11.7 TO-Brake® 10 be util) Flow (1. 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
The hydrolog Optimum as s then these s Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	gical ca specifie storage 5.9 12.8 13.9 13.0 13.1 Hydro-	Flush-Flo ^{ma} Alculations h ad. Should a routing calc Depth (m) 1 0.800 1.000 1.200 1.400 1.600 1.800 Brake® Opt Minimum O Suggest Points (Calculated)	 0.364 ave been baanother type culations with the second state of the second stat	13.6 1 sed on the of control 11 be inval Depth (m) F 2.000 2.200 2.400 2.600 3.000 3.500 ole: 78, 2 nit Referen sign Head (gn Flow (1/ Flush-Fl Objecti Applicati ump Availab Diameter (m crt Level (Diameter (m Clameter (m Clameter (m) State (1/s) 25.8	Head/Disch I device of Lidated Flow (1/s) 17.3 18.1 18.9 19.6 21.0 22.6 DS/PN: 6 DS/PN: 6 DS/PN: 6 Contention	over Head I harge relat ther than a Depth (m) 4.000 4.500 5.500 6.000 6.500 0.016, Vol 0.016, Vol 0.0219-2580- C .se upstrea col Points Kick-	Range ionship for Hydro-Brak Flow (1/s) 24.1 25.5 26.9 28.1 29.3 30.5 ume (m ³): 1200-2580 1.200 25.8 alculated m storage Surface Yes 219 114.148 300 1500 Head -Flo® 0.	- the Hydr c Optimum 7.000 7.500 8.000 8.500 9.000 9.500 1662.7 (m) Flow	<pre>11.7 To-Brake® 10 be util) Flow (1) 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 1 (1/s) 21.8</pre>

								F	age 3
225 Bath	Street				_				
Glasgow									
G2 4GZ									Micro
Date 24/1	0/2024	15:32		Designed	by ape	ters			
		rmDrain.md:	x	Checked b					Drainage
Innovyze				Network 2					
тшоууге				Network 2	2020.1				
	Hydro	-Brake® Op	otimum Man	hole: 78, DS	G/PN: 6	.016, Volu	ume (m³):	1662.7	
Depth (m)	Flow (1/	s) Depth (m)	Flow (l/s)	Depth (m) Flo	ow (l/s)	Depth (m)	Flow (l/s)	Depth (m	n) Flow (l/s)
0.100	7	.4 0.800	23.0	2.000	32.9	4.000	46.0	7.00	60.4
0.200	21	.6 1.000	23.6		34.5	4.500	48.7	7.50	62.4
0.300	25				36.0		51.3		
0.400	25				37.4		53.7		
0.500	25				40.0		56.0		
0.600	25	.1 1.800	31.3	3.500	43.1	6.500	58.2	9.50	70.0
	Hydro	o-Brake® Op	otimum Man	hole: 140, I	DS/PN:	7.024, Vol	Lume (m³)	: 657.0	
				Unit Reference	e MD-SHE-	-0116-6400-1	L200-6400		
			Γ	Design Head (m))		1.200		
				sign Flow (l/s)			6.4		
				Flush-Flo ^r	м	Ca	alculated		
				Objective	e Minim:	ise upstream	n storage		
				Application	ı	-	Surface		
				Sump Available			Yes		
				Diameter (mm)			116		
			In	vert Level (m))		99.393		
		Minimum		e Diameter (mm)			150		
			-						
		Sugge	sted Manhole	e Diameter (mm))		1200		
	Contro					rol Points		(m) Flow	(1/s)
Doo		l Points	Head (m)	Flow (l/s)		rol Points	Head		
Des			Head (m)	Flow (1/s) 6.4	Conti	rol Points Kick- over Head R	Head Flo® 0.	(m) Flow 751 -	(1/s) 5.1 5.6
The hydro Optimum a then thes	sign Poin [.] ological as specif se storag	l Points (Calculated Flush-Flo calculations ied. Should e routing ca	Head (m) d) 1.200 or 0.354 have been k another typ lculations v	Flow (1/s) 6.4 6.4 Me based on the He be of control of will be invalid	Contr can Flow ead/Disch device of dated	Kick- over Head R harge relati ther than a	Head Flo® 0. ange ionship for Hydro-Brał	751 - c the Hyd: ce Optimur	5.1 5.6 ro-Brake® n® be utilise
The hydro Optimum a then thes Depth (m)	ological as specif se storag Flow (1/	<pre>l Points c (Calculated Flush-Flo calculations ied. Should e routing ca s) Depth (m)</pre>	Head (m) d) 1.200 m 0.354 have been k another typ lculations v Flow (1/s)	Flow (1/s) 6.4 6.4 Me based on the He be of control of will be invalid	Contr ean Flow ead/Disch device of dated ow (1/s)	Kick- over Head R harge relati ther than a Depth (m)	Head Flo® 0. ange ionship for Hydro-Brał Flow (1/s)	751 - c the Hyd: ce Optimur Depth (m	5.1 5.6 n® be utilise n) Flow (l/s)
The hydro Optimum a then thes Depth (m) 0.100	ological as specif se storag Flow (1/ 4	<pre>l Points c (Calculated Flush-Flo calculations ied. Should e routing ca s) Depth (m) .1 0.800</pre>	Head (m) d) 1.200 m 0.354 have been k another typ lculations v Flow (1/s) 5.3	Flow (1/s) 6.4 6.4 Me based on the He be of control of will be invalid Depth (m) Flo 2.000	Contr Contr	Kick- over Head R harge relati ther than a Depth (m) 4.000	Head Flo® 0. ange ionship for Hydro-Brał Flow (1/s) 11.3	751 - c the Hyd: ce Optimum Depth (m 7.00	5.1 5.6 m® be utilise n) Flow (l/s) 00 14.7
The hydro Optimum a then thes Depth (m) 0.100 0.200	ological as specif se storag Flow (1/ 4 6	<pre>1 Points c (Calculated Flush-Flo calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000</pre>	Head (m) d) 1.200 m 0.354 have been k another typ lculations v Flow (1/s) 5.3 5.9	Flow (1/s) 6.4 6.4 Me based on the He be of control of will be invalid Depth (m) Flo 2.000 2.200	Contr ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500	Head Flo® 0. ange ionship fon Hydro-Brał Flow (1/s) 11.3 11.9	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50	5.1 5.6 n® be utilise n) Flow (1/s) 00 14.7 00 15.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300	ological as specif se storag Flow (1/ 4 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 0.0 1.000 .3 1.200</pre>	Head (m) d) 1.200 □ [™] 0.354 have been k another typ lculations v Flow (1/s) 5.3 5.9 6.4	Flow (1/s) 6.4 6.4 Me based on the He or of control of will be invalid Depth (m) Flo 2.000 2.200 2.400	Contr ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000	Head Flo® 0. ange ionship fon Hydro-Brał Flow (1/s) 11.3 11.9 12.5	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00	5.1 5.6 m® be utilise n) Flow (1/s) 00 14.7 00 15.2 00 15.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400	ological as specif se storag Flow (1/ 4 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400</pre>	Head (m) d) 1.200 □ [™] 0.354 have been k another typ lculations v Flow (1/s) 5.3 5.9 6.4 6.9	Flow (1/s) 6.4 6.4 Me based on the He or of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600	Contr ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500	Head Flo® 0. ange ionship fon Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50	5.1 5.6 m® be utilise 0 Flow (1/s) 0 14.7 0 15.2 0 15.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600</pre>	Head (m) d) 1.200 □ [™] 0.354 have been k another typ lculations v Flow (1/s) 5.3 5.9 6.4 6.9 7.3	Flow (1/s) 6.4 6.4 Me based on the He or of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000	Contr ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000	Head Flo® 0. ange ionship fon Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00	5.1 5.6 m® be utilise 0 Flow (1/s) 0 14.7 0 15.2 0 15.2 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 0.354 have been k another typ culations v Flow (1/s) 5.3 5.9 6.4 6.9 7.3 7.7	Flow (1/s) 6.4 6.4 Me based on the He be of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500	Cont: ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.2 9.8 10.6	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ lculations w Flow (1/s) 5.3 5.9 6.4 6.9 7.3 7.7 ptimum Mar	Flow (1/s) 6.4 6.4 Me based on the He or of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000	Contr can Flow ead/Disch device of dated cow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²)	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations w Flow (1/s) 5.3 5.9 6.4 6.9 7.3 7.7 ptimum Mar	Flow (1/s) 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.400 2.400 2.600 3.000 3.500 hhole: 155,	Contr can Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: e MD-SHE	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²)	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations v Flow (l/s) 5.3 5.9 6.4 6.9 7.3 ptimum Mar	Flow (1/s) 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.400 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m)	Contr ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: e MD-SHE-	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²)	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations v Flow (l/s) 5.3 5.9 6.4 6.9 7.3 ptimum Mar	Flow (1/s) 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.400 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference	Contr ean Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: e MD-SHE-	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V	Head Flo® 0. ange ionship for Hydro-Brał Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (mi 1000-5000 1.000	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations v Flow (l/s) 5.3 5.9 6.4 6.9 7.3 ptimum Mar	Flow (1/s) 6.4 6.4 Me based on the He pe of control of will be invalid Depth (m) Flov 2.000 2.400 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) sign Flow (1/s)	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE-	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V	Head Flo® 0. ange ionship fon Hydro-Brał Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (mi 1000-5000 1.000 0.5 alculated	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations v Flow (l/s) 5.3 5.9 6.4 6.9 7.3 ptimum Mar	Flow (1/s) 6.4 6.4 Me based on the He pe of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Flush-Flor	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange ionship fon Hydro-Brał Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (mi 1000-5000 1.000 0.5 alculated	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations v Flow (l/s) 5.3 5.9 6.4 6.4 6.9 7.3 7.7 ptimum Mar Des	Flow (1/s) 6.4 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Flush-Flor Objective Application	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange ionship for Hydro-Brał Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (mi 1000-5000 1.000 0.5 alculated n storage	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 o™ 0.354 have been k another typ culations v Flow (l/s) 5.3 5.9 6.4 6.4 6.9 7.3 7.7 ptimum Mar Des	Flow (1/s) 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Flush-Flor Objective	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim: 1	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange ionship fon Hydro-Brał Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (mi 1000-5000 1.000 0.5 alculated n storage Surface	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 n® be utilise n) Flow (1/s) 0 14.7 0 15.2 0 15.7 0 16.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800</pre>	Head (m) d) 1.200 p™ 0.354 have been k another typ lculations v Flow (1/s) 5.3 5.9 6.4 6.9 7.3 7.7 ptimum Mar Des	Flow (1/s) 6.4 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Sign Flow (1/s) Flush-Flor Objective Application	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²) 1000-5000 1.000 0.5 alculated n storage Surface Yes	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 m® be utilise a) Flow (1/s) 00 14.7 00 15.2 00 15.7 00 16.2 00 16.6
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800 co-Brake® O</pre>	Head (m) d) 1.200 □ ^m 0.354 have been k another typ lculations v Flow (l/s) 5.3 5.9 6.4 6.9 7.3 7.7 ptimum Mar Des	Flow (1/s) 6.4 6.4 6.4 Me be of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Sign Flow (1/s) Flush-Flor Objective Application Sump Available Diameter (mm)	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²) 1000-5000 1.000 0.5 alculated n storage Surface Yes 32	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 m® be utilise a) Flow (1/s) 00 14.7 00 15.2 00 15.7 00 16.2 00 16.6
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	blogical as specif se storag Flow (1/ 4 6 6 6 6 6 6 6 6 6	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800 co-Brake® O </pre>	Head (m) d) 1.200 p™ 0.354 have been k another typ lculations v Flow (l/s) 5.3 5.9 6.4 6.9 7.3 7.7 ptimum Mar Des Ir Outlet Pipe	Flow (1/s) 6.4 6.4 6.4 Me based on the He pe of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Flush-Flor Objective Application Sump Available Diameter (mm) ivert Level (m)	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²) 1000-5000 1.000 0.5 alculated a storage Surface Yes 32 113.322	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 m® be utilise a) Flow (l/s) 00 14.7 00 15.2 00 15.7 00 16.2 00 16.6
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	contro	<pre>1 Points c (Calculated Flush-Fld calculations ied. Should e routing ca s) Depth (m) .1 0.800 .0 1.000 .3 1.200 .3 1.400 .2 1.600 .0 1.800 co-Brake® O </pre>	Head (m) d) 1.200 0.354 have been k another typ culations v Flow (1/s) 5.3 5.9 6.4 6.9 7.3 7.7 ptimum Mar Des Ir Outlet Pipe sted Manhole Head (m)	Flow (1/s) 6.4 6.4 6.4 Me based on the He pe of control of will be invalid Depth (m) Flo 2.000 2.200 2.400 2.600 3.000 3.500 hhole: 155, Unit Reference Design Head (m) Sign Flow (1/s) Flush-Flor Objective Application Sump Available Diameter (mm) wert Level (m)	Contr an Flow ead/Disch device of dated ow (1/s) 8.1 8.5 8.9 9.2 9.8 10.6 DS/PN: MD-SHE- Minim:	Kick- over Head R harge relation ther than a Depth (m) 4.000 4.500 5.000 5.500 6.000 6.500 12.005, V -0032-5000-1	Head Flo® 0. ange 0. ionship for Hydro-Brak Flow (1/s) 11.3 11.9 12.5 13.1 13.7 14.2 olume (m ²) 1000-5000 1.000 0.5 alculated n storage Surface Yes 32 113.322 75 1200 Head	751 - c the Hyd: ce Optimum Depth (m 7.00 7.50 8.00 8.50 9.00 9.50	5.1 5.6 no-Brake® n® be utilise a) Flow (1/s) 00 14.7 00 15.2 00 15.7 00 16.2 00 16.6 00 17.0

Fairhurst																P	age	4	
225 Bath	Stree	t															_		
Glasqow																	4		
G2 4GZ																			June 1
	0 / 2 0 2	1 1 5							l lo										
Date 24/1								-		у аре	cers						Dr	aina	AUL
File 2024	1024_	Perm	Drain.	mdx					ed by										-9-
Innovyze							N	etwo	rk 20	20.1									
	HZ	/dro-	Brake®) Op	timu	m Mar	nhole	e: 15	5, DS	/PN:	12.0	05, 1	/olum	e (m	³):	2.2			
then the	se sto:	rage 1	outing	cal	culat	ions v	vill k	be inv	ralida	ted									
Depth (m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Dept	:h (m)	Flow	(l/s)	Dept	h (m)	Flow	(l/s)	Dep	oth (m	n) E	low	(1/s)
0.100		0.3	0.	800		0.5		2.000		0.7		4.000		0.9		7.00	00		1.2
0.200		0.3		000		0.5		2.200		0.7		4.500		1.0		7.50	00		1.2
0.300		0.3	1.	200		0.5		2.400		0.7		5.000		1.0		8.00	00		1.3
0.400		0.3	1.	400		0.6		2.600		0.8		5.500		1.1		8.50	00		1.3
0.500		0.4	1.	600		0.6		3.000		0.8		6.000		1.1		9.00	00		1.3
0.600		0.4	1.	800		0.6		3.500		0.9		6.500		1.2		9.50	00		1.4
	Hyc	<u>dro</u> -B	rake®	Opt	imum	Manł	<u>nol</u> e:	<u>1</u> 63	<u>, D</u> S/	'PN: 1	<u>3.</u> 00)7, Va	<u>olu</u> me	(m ³): 3	8 <u>28</u> .7	1		
							Unit	Pofor		MD-SHE-	.0050	_1400_	0770-	1400			_		
						Γ		Head		мр-знь-	-0039	-1400-		.770					
							-	'low (1.4					
							-	lush-				C	alcula	ated					
										Minimi	se u								
								plica				L		face					
							-	Avail						Yes					
							-	neter						59					
						In		Level	. ,				98	.431					
			Minim	num (Dutlet	t Pipe	Diam	neter	(mm)					75					
						-													
			Suc	ggest	ted Ma	anhole	e Diam	neter	(mm)					1200					
	Con	trol	Suc Points			anhole d (m)				Contr	col P	oints			(m)	Flow	(1/	/s)	
Des			_		Head					Contr	col P			Head	(m)	Flow		's)	
Des			Points	ated)	Head	d (m)		(1/s)) 1	Contr Flow		Kick	-Flo®	Head		Flow	1	-	
Des The hydro	sign Po	oint (Points Calcula Flush-	ated) -Flo ^T	Head	d (m) 0.770 0.238	Flow	(1/s)	1 1 1 Mean	Flow	over	Kick Head I	-Flo® Range	Head 0.	490		1	L.1 L.2	®
The hydro Optimum a	sign Po plogica as spec	oint (al cal cified	Points Calcula Flush- culatic A. Shou	ated) -Flo ^r ons 1 uld a	Head) (M (have) anothe	d (m) 0.770 0.238 been k er typ	Flow Dased De of	(1/s) 1.4 1.4 on th contr	Mean Mean Head	flow d/Disch vice ot	over narge	Kick Head I relat	-Flo® Range ionsh	Head 0. ip fo:	.490 - r th	e Hyd:	1 1 ro-E	L.1 L.2 Brake	
The hydro Optimum a then thes	ologica as spe se sto:	oint (al cal cifiec rage 1	Points Calcula Flush- culatic d. Shou	ated) -Flo ^T ons l uld a calo	Head) (M (have } anothe culat:	d (m) 0.770 0.238 been k er typ ions v	Flow based be of vill k	(1/s) 1.4 1.4 on th contr be inv	Mean Mean Head Tol de Talida	flow d/Disch vice ot ted	over narge ther	Kick Head : relat than a	-Flo® Range ionsh Hydro	Head 0. ip fo: p-Brai	490 - r th ke O	e Hyd: ptimur	1 1 ro-E m® k	L.1 L.2 Brake De ut	ilised
The hydro Optimum a then thes Depth (m)	ologica as spe se sto:	oint (al cal cifiec rage r (1/s)	Points Calcula Flush- culatic . Shou couting Depth	ated) -Flo ^r ons l uld a calo (m)	Head) (M (have } anothe culat:	d (m) 0.770 0.238 been k er typ ions v (1/s)	Flow based be of vill k	(1/s) 1.4 1.4 on th contr be inv ch (m)	Mean Mean Mean Mean Mean Mean Mean Mean	d/Disch d/Disch vice ot ted (l/s)	over harge ther Dept	Kick Head I relat than a h (m)	-Flo® Range ionsh Hydro	Head 0. ip fo: b-Brai (1/s)	490 - r the ke Oj	e Hyd: ptimur pth (m	1 1 m® k n) F	L.1 L.2 Brake De ut	ilised (l/s)
The hydro Optimum a then thes Depth (m) 0.100	ologica as spe se sto:	oint (al cal cifiec rage n (1/s) 1.2	Points Calcula Flush- culatic d. Shou couting Depth 0.	ated) -Flo ^T ons l uld a calo (m) 800	Head) (M (have } anothe culat:	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4	Flow based be of will k	(1/s) 1.4 1.4 on th contr be inv ch (m) 2.000	Mean Mean Mean Mean Mean Mean Mean Mean	Flow d/Disch vice ot ted (l/s) 2.2	over harge ther Dept	Kick Head I relat than a h (m) 4.000	-Flo® Range ionsh Hydro	Head 0. ip fo: p-Brai (1/s) 3.0	490 - r the ke Op	e Hyd: ptimur p th (m 7.00	1 1 m® k n) F	L.1 L.2 Brake De ut	ilised (1/s) 3.9
The hydro Optimum a then thes Depth (m) 0.100 0.200	ologica as spe se sto:	oint (al cal cified rage r (1/s) 1.2 1.4	Points Calcula Flush- culatic d. Shou couting Depth 0. 1.	ated) -Flo ^T ons 1 uld a calo (m) 800 000	Head) (M (have } anothe culat:	<pre>d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6</pre>	Flow based be of will k	(1/s) 1.4 1.4 on th contr be inv ch (m) 2.000 2.200	4 4 Mean rol de ralida Flow	d/Disch vice ot ted (1/s) 2.2 2.3	over harge ther Dept	Kick Head : relat than a h (m) 4.000 4.500	-Flo® Range ionsh Hydro	Head 0. ip fo: o-Brai (1/s) 3.0 3.1	490 - ke Op	e Hyd: ptimur o th (m 7.00 7.50	1 1 m® k n) F 00	L.1 L.2 Brake De ut	ilised (1/s) 3.9 4.0
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300	ologica as spe se sto:	oint (al cal cified rage r (1/s) 1.2 1.4 1.4	Points Calcula Flush- culatic bouting Depth 0. 1.	ated) -Flo ^T ons 1 uld a calo (m) 800 000 200	Head) (M (have } anothe culat:	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7	Flow based be of vill k	(1/s) 1.4 1.4 on th contr be inv th (m) 2.000 2.200 2.400	4 4 Mean rol de ralida Flow	<pre>d/Disch vice ot ted (1/s) 2.2 2.3 2.3</pre>	over harge ther Dept	Kick Head : relat than a h (m) 4.000 4.500 5.000	-Flo® Range ionsh Hydro	Head 0. ip fo: o-Brai (1/s) 3.0 3.1 3.3	490 - r the ke Op	e Hyd: ptimur 0 th (m 7.00 7.50 8.00	1 1 m® k n) F 00 00	L.1 L.2 Brake De ut	ilised (1/s) 3.9 4.0 4.1
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400	ologica as spe se sto:	cified rage r (1/s) 1.2 1.4 1.4 1.3	Points Calcula Flush- cculatic touting Depth 0. 1. 1.	ated) -Flo ^T ons l uld a calo (m) 800 000 200 400	Head) (M (have } anothe culat:	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8	Flow based be of will k	(1/s) 1.4 1.4 on th contr be inv th (m) 2.000 2.200 2.400 2.600	4 4 Mean rol de ralida Flow	<pre>d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4</pre>	over harge her Dept	Kick Head 2 relat than a h (m) 4.000 4.500 5.000 5.500	-Flo® Range ionsh Hydro	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4	490 - ke Oj	e Hyd: ptimur 7.00 7.50 8.00 8.50	1 1 m® k n) F 00 00 00	L.1 L.2 Brake De ut	ilised (1/s) 3.9 4.0 4.1 4.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	ologica as spe se sto:	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2	Points Calcula Flush- cculatic touting Depth 0. 1. 1. 1.	ated) -Flo ^T uld a calo (m) 800 000 200 400 600	Head) (M (have } anothe culat:	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9	Flow based be of vill k Dept	(1/s) 1.4 1.4 on th contr oe inv ch (m) 2.000 2.200 2.400 2.600 3.000	Mean Mean Mean Mean Mean Mean Mean Mean	<pre>d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6</pre>	over harge ther Dept	Kick Head 2 relat than a h (m) 4.000 4.500 5.000 5.500 6.000	-Flo® Range ionsh Hydro	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6	.490 - ke Oj	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er tyr ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1	Flow based be of vill k Dept	(1/s) 1.4 1.4 on th contr be inv 2.000 2.200 2.200 2.400 2.600 3.000 3.500	Mean Mean Pol de Pol de Pol de Flow	<pre>d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8</pre>	over harge ther Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.000 5.500 6.000 6.500	-Flo® Range ionsh Hydr Flow	Head 0. o-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	ilised (1/s) 3.9 4.0 4.1 4.2
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- cculatic touting Depth 0. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er tyr ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1	Flow based be of vill k Dept	(1/s) 1.4 1.4 on th contr be inv 2.000 2.200 2.200 2.400 2.600 3.000 3.500	Mean Mean Pol de Pol de Pol de Flow	<pre>d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8</pre>	over harge ther Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.000 5.500 6.000 6.500	-Flo® Range ionsh Hydr Flow	Head 0. o-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow based be of will k Dept hhole	(1/s) 1.4 1.4 0 n th contr be inv 2.000 2.200 2.400 2.400 2.600 3.000 3.500 e: 17 Refer	Mean Mean Tol der Talida Flow	<pre>d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8</pre>	Dept	Kick Head T relat than a h (m) 4.000 4.500 5.500 6.000 6.500	-Flo® Range ionsh: Hydr Flow <u>Volum</u> 1200-:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>ilised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow Dased De of will k Dept Dept	(1/s) 1.4 1.4 0 n th contr be inv 2.000 2.200 2.200 2.400 2.600 3.000 3.500 2.17 Refer head	Mean Mean Flow 8, DS ence 1	<pre>A Flow d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8 6/PN:</pre>	Dept	Kick Head T relat than a h (m) 4.000 4.500 5.500 6.000 6.500	-Flo® Range ionsh: Hydr Flow <u>Volum</u> 1200-:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>ilised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow Dased De of will k Dept Dept Unit Design Sign F	(1/s) 1.4 1.4 0 n th contro 0 inv 2.000 2.200 2.200 2.400 2.600 3.000 3.500 2.400 2.600 3.000 3.500 2.400 2.600 3.000 3.500 2.17 Refer head Clow (1)	<pre>4 4 Mean col de- ralida Flow 8, DS ence 1 . (m) 1/s)</pre>	<pre>A Flow d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8 6/PN:</pre>	over harge ther Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, T -1200-	-Flo® Range ionsh: Hydro Flow /olum 1200-:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow Dased De of vill k Dept Dept Unit Design Sign F	(1/s) 1.4 1.4 0 n th contro 0 inv 2.000 2.200 2.200 2.400 2.600 3.000 3.500 2.400 2.600 3.000 3.500 2.17 Refer n Head Clow (Clush-	A Mean Head He	<pre>// Flow // Disch // vice ot // ted // 2.2 2.3 2.3 2.4 2.6 2.8 // PN: // PN: // D-SHE-</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydr Flow 1200-: 1 :alcul:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow Dased De of will h Dept Dept Unit Design Sign F F	(1/s) 1.4 1.4 0.0 th contro 0 inv 2.000 2.200 2.200 2.200 2.400 2.600 3.000 3.500 2.400 2.600 3.000 3.500 2.17 Refer head Clow (Clush- Objec	A Mean rol der ralida Flow 8, DS ence 1 . (m) 1/s) Flo™ tive	<pre>A Flow d/Disch vice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8 6/PN:</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 1200-: 1 :alcula m sto:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow Dased De of vill k Dept Dept Unit Design Sign F F Ap	(1/s) 1.4 1.4 0.01 th contro 0 inv 2.000 2.2	A Mean rol de ralida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion	<pre>// Flow // Disch // vice ot // ted // 2.2 2.3 2.3 2.4 2.6 2.8 // PN: // PN: // D-SHE-</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 1200-: 1 :alcula m sto:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar	Flow based be of vill k Dept Dept Unit Design F F Ap Sump	(1/s) 1.4 1.4 0.01 th contro 0 inv 2.000 2.2	A Mean rol de ralida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion able	<pre>// Flow // Disch // vice ot // ted // 2.2 2.3 2.3 2.4 2.6 2.8 // PN: // PN: // D-SHE-</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 1200-: 1 :alcula m sto:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatic bouting Depth 0. 1. 1. 1. 1.	ated) -Flo ^m uld a cald (m) 800 000 200 400 600 800	Head Mave B anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar E Des	Flow Dased De of vill k Dept Dept Unit Design Sign F F Ap Sump Diam	(1/s) 1.4 1.4 0.01 th contro 0.000 2.000 2.200 2.200 2.200 2.200 2.400 2.200 3.000 3.000 3.500 2.17 Refer Mead Clow (Clush- Objec Oplica Avail Meter	A Mean rol de ralida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion able (mm)	<pre>// Flow // Disch // vice ot // ted // 2.2 2.3 2.3 2.4 2.6 2.8 // PN: // PN: // D-SHE-</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 1200-: 1 2alcula m sto: Sur:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes 49	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatio . Shou couting Depth 0. 1. 1. 1. 1. Brake®	ated) -Flo ^T uld (cal (m) 800 200 400 600 800 800	Head) () have } anothe culat: Flow	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar E Des	Flow Dased De of vill k Dept Dept Unit Design F F Ap Sump Diam	(1/s) 1.4 1.4 0.01 th contro 0.000 2.000 2.2	A A Mean rol der ralida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion able (mm) (m)	<pre>// Flow // Disch // vice ot // ted // 2.2 2.3 2.3 2.4 2.6 2.8 // PN: // PN: // D-SHE-</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 1200-: 1 2alcula m sto: Sur:	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes 49 .577	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	sign Po ologica as spe se sto Flow	cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3	Points Calcula Flush- culatio . Shou couting Depth 0. 1. 1. 1. 1. Brake®	ated) -Flo ^T uld a cal (m) 800 200 400 600 800 800 800 800	Head have } anothe culat: Flow Outlet	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar E Des	Flow based be of vill k Dept Dept Unit Design F F Ap Sump Diam	(1/s) 1.4 1.4 0.01 th contro 0.000 2.200	A A Mean rol der ralida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion able (mm) (mm)	<pre>// Flow // Disch // vice ot // ted // 2.2 2.3 2.3 2.4 2.6 2.8 // PN: // PN: // D-SHE-</pre>	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 701um 1200-: 1 alcula m sto: Sur: 144	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes 49	490 - r th ke Oj Der	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 m® k n) F 00 00 00 00 00 00	L.1 L.2 Brake De ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500	Sign Po plogic, as spe se sto: Flow	pint (al cal cified rage r (1/s) 1.2 1.4 1.4 1.3 1.2 1.3 ydro-	Points Calcula Flush- culatio . Shou couting Depth 0. 1. 1. 1. 1. Brake®	ated) -Flo ^T uld a cal (m) 800 200 400 600 800 800 800 800	Head Marchar Culat: Flow Outlet ted Ma	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar I Des	Flow based be of vill k Dept Dept Unit Design F F Sump Diam Vert e Diam	(1/s) 1.4 1.4 1.4 0 n th contro 0 inv 2.000 2.200	A A Mean rol der ralida Flow 8, DS ence I (m) 1/s) Flo™ tive tion able (mm) (mm) (mm)	d/Dischvice ot ted (1/s) 2.2 2.3 2.3 2.4 2.6 2.8 3/PN: MD-SHE- Minimi	over harge her Dept	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, 7 -1200-	-Flo® Range ionsh: Hydro Flow 701um 1200-: 1 alcula m sto: Sur: 144	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes 49 .577 75 1200	490 - r thake Op	Hyd: ptimur 7.00 7.50 8.00 8.50 9.00 9.50	1 1 1 ro-F m® k k n) F 00 00 00 00 00 00 00 00 00	L.1 L.2 Brake be ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	Esign Po plogic, as spe se sto Flow <u>Hy</u>	trol :	Points Calcula Flush- culatic d. Shou couting Depth 0. 1. 1. 1. 1. Brake® Minim Suc	ated) -Flo ^T ons 1 uld a cal (m) 800 200 400 600 800 800 800 800 9 0p	Head have } anothe culat: Flow Outlet ted Ma Head	d (m) 0.770 0.238 been k er tyy ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar Des Int t Pipe anhole d (m)	Flow based be of vill k Dept Dept Unit Design F F Sump Diam Vert e Diam	(1/s) 1.4 1.4 0.01 th controls 1.4 0.01 th controls 1.4 0.000 2.200 2.2000	A Mean Palida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion able (mm) (mm) (mm)	<pre>A Flow d/Disch vice ot ted (1/s) 2.2 2.3 2.4 2.6 2.8 G/PN: MD-SHE- Minimi</pre>	over harge her Dept	Kick Head 3 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, V -1200- copstrea	-Flo® Range ionsh Hydro Flow 1200-: 1 Calcula Sur: 144	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes 49 .577 75 1200 Head	(m)	e Hyd: oth (m 7.00 7.50 8.00 9.00 9.50 2.0	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I.1 L.2 Brake be ut Flow	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>
The hydro Optimum a then thes Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	Esign Po plogic, as spe se sto Flow <u>Hy</u>	trol :	Points Calcula Flush- culatio d. Shou couting Depth 0. 1. 1. 1. 1. Brake®	ated) -Flo ^T ons 1 uld a cal (m) 800 200 400 600 800 800 800 800 800 800 800 800 8	Head Head have B anothe culat: Flow Outlet ted Ma Head)	d (m) 0.770 0.238 been k er typ ions v (1/s) 1.4 1.6 1.7 1.8 1.9 2.1 m Mar I Des Int t Pipe anhole	Flow based be of vill k Dept Dept Unit Design F F Sump Diam Vert e Diam	(1/s) 1.4 1.4 0.01 th controls 1.4 0.000 2.000 2.200 3.500 3.500 3.500 3.500 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.200 2.200 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.500 3.500 2.200 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.200 2.400 2.200 2.400 2.200 2.400 2.200 2.400 2.2	A Mean re Head rol de ralida Flow 8, DS ence 1 (m) 1/s) Flo™ tive tion able (mm) (mm) (mm)	<pre>A Flow d/Disch vice ot ted (1/s) 2.2 2.3 2.4 2.6 2.8 G/PN: MD-SHE- Minimi</pre>	over harge ther Dept 14.0 -0049 .se u	Kick Head 1 relat than a h (m) 4.000 4.500 5.500 6.000 6.500 008, V -1200- C pstrea oints Kick	-Flo® Range ionsh. Hydro Flow 1200-i 1 calcula m sto: Sur: 144 -Flo®	Head 0. ip fo: b-Brai (1/s) 3.0 3.1 3.3 3.4 3.6 3.7 e (m 1200 .200 1.2 ated rage face Yes 49 .577 75 1200 Head	490 - r thake Op	e Hyd: oth (m 7.00 7.50 8.00 9.00 9.50 2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	L.1 L.2 Brake be ut	<pre>illised (1/s) 3.9 4.0 4.1 4.2 4.4</pre>

Fairhurst		Page 5
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diamage
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: 178, DS/PN: 14.008, Volume (m³): 2.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)								
0.100	0.9	0.800	1.0	2.000	1.5	4.000	2.1	7.000	2.7
0.200	0.9	1.000	1.1	2.200	1.6	4.500	2.2	7.500	2.8
0.300	0.9	1.200	1.2	2.400	1.6	5.000	2.3	8.000	2.9
0.400	0.8	1.400	1.3	2.600	1.7	5.500	2.4	8.500	2.9
0.500	0.8	1.600	1.4	3.000	1.8	6.000	2.5	9.000	3.0
0.600	0.9	1.800	1.4	3.500	2.0	6.500	2.6	9.500	3.1

Delaharat		Denie
Fairhurst 225 Bath Street		Page 6
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Drainage
Innovyze	Network 2020.1	·
Storage	Structures for Storm	
Porous Car Pa	rk Manhole: 1, DS/PN: 1.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 90.0	I
Membrane Percolation)
	n (1/s) 2250.0 Slope (1:X) 1000.0	
	Factor 2.0 Depression Storage (mm) (
	orosity 0.30 Evaporation (mm/day) 3 vel (m) 127.205 Membrane Depth (mm) 0	
Porous Car Pa	rk Manhole: 2, DS/PN: 1.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 45.0	1
Membrane Percolation		1
	n (l/s) 1125.0 Slope (1:X) 1000.0	
	Factor 2.0 Depression Storage (mm) (
	orosity 0.30 Evaporation (mm/day) 3 vel (m) 126.603 Membrane Depth (mm) 0	
Porous Car Pa	rk Manhole: 7, DS/PN: 1.006	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 45.0	1
Membrane Percolation		
	n (l/s) 562.5 Slope (1:X) 1000.0	
	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/day)3	
	vel (m) 125.515 Membrane Depth (mm) (
	rk Manhole: 8, DS/PN: 1.007	
Infiltration Coefficient Base		
Membrane Percolation		
	n (1/s) 3750.0 Slope (1:X) 1000.0 Factor 2.0 Depression Storage (mm) 0	
-	orosity 0.30 Evaporation (mm/day)	
	vel (m) 124.995 Membrane Depth (mm) (
Cellular Stora	ge Manhole: 30, DS/PN: 1.029	
Thye	ert Level (m) 116.604 Safety Factor 2.0	
Infiltration Coefficient Infiltration Coefficient	t Base (m/hr) 0.00000 Porosity 1.00	
Depth (m) Area (m²) Inf. An	rea (m²) Depth (m) Area (m²) Inf. Area (m²)	
0.000 6400.0	0.0 1.200 6400.0 0.0	
Porous Car Par	rk Manhole: 32, DS/PN: 2.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150.0	1
Membrane Percolation		
	n (l/s) 3750.0 Slope (1:X) 1000.0	1
-	Factor 2.0 Depression Storage (mm)	
	orosity 0.30 Evaporation (mm/day) 3 vel (m) 127.169 Membrane Depth (mm) 0	

Fairhurst		Page 7
225 Bath Street		
Glasgow		
G2 4GZ		Micco
Date 24/10/2024 15:32	Designed by apeters	
File 20241024 PermDrain.mdx	Checked by	Drainage
Innovyze	Network 2020.1	
Porous Car Par	rk Manhole: 33, DS/PN: 2.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150.0	
Membrane Percolation		
	n (1/s) 3750.0 Slope (1:X) 1000.0	
Salety	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/day)3	
Invert Le	vel (m) 126.595 Membrane Depth (mm) 0	
Porous Car Pa:	rk Manhole: 34, DS/PN: 2.002	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150.0	
Membrane Percolation		
	n (1/s) 3750.0 Slope (1:X) 1000.0	
	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/dav)3	
Invert. Le	orosity 0.30 Evaporation (mm/day) 3 vel (m) 125.963 Membrane Depth (mm) 0	
Porous Car Pa:	rk Manhole: 35, DS/PN: 2.003	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150.0	
Membrane Percolation		
	n (1/s) 1875.0 Slope (1:X) 1000.0	
-	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/day)3	
	vel (m) 125.219 Membrane Depth (mm) 0	
Porous Car Pa:	rk Manhole: 40, DS/PN: 3.000	
Infiltration Coefficient Base		
Membrane Percolation Max Percolatio		
	Factor 2.0 Depression Storage (mm) 0	
-	orosity 0.30 Evaporation (mm/day) 3	
Invert Le	vel (m) 127.585 Membrane Depth (mm) 0	
<u>Cellular Stora</u>	ge Manhole: 47, DS/PN: 2.014	
Inv Infiltration Coefficien Infiltration Coefficien		
Depth (m) Area (m²) Inf. A	rea (m²) Depth (m) Area (m²) Inf. Area (m²)	
0.000 7892.0	0.0 1.200 9476.0 0.0	
Porous Car Pa:	rk Manhole: 49, DS/PN: 4.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 100.0	
Membrane Percolation		
Max Percolatio	n (l/s) 2500.0 Slope (1:X) 1000.0	
-	Factor 2.0 Depression Storage (mm) 0	
	orosity 0.30 Evaporation (mm/day) 3 vel (m) 127.192 Membrane Depth (mm) 0	
Invert Le	ver (m) 127.192 Memorane Depth (hun) 0	
Porous Car Pa:	rk Manhole: 54, DS/PN: 5.000	
Infiltration Coefficient B.	ase (m/hr) 0.00000 Porosity 0.30	
Membrane Percolati	· · · · · · ·	
	tion (l/s) 3750.0 Width (m) 150.0	
Saf	ety Factor 2.0 Length (m) 90.0	

Fairhurst		Page 8
225 Bath Street		
Glasgow		
G2 4GZ		Micco
Date 24/10/2024 15:32	Designed by apeters	Micro
File 20241024 PermDrain.mdx	Checked by	Drainage
Innovyze	Network 2020.1	
IIIIOVyze	Network 2020.1	
Porous Car Pa	rk Manhole: 54, DS/PN: 5.000	
-	(1:X) 1000.0 Evaporation (mm/day) 3 (mm) 0 Membrane Depth (mm) 0	
Porous Car Pa	rk Manhole: 55, DS/PN: 4.005	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 100	0.0
Membrane Percolation		0.0
	n (1/s) 2500.0 Slope (1:X) 1000	
	Factor 2.0 Depression Storage (mm)	0
	vel (m) 124.999 Membrane Depth (mm)	3 0
THALF PE		~
<u>Cellular Stora</u>	age Manhole: 60, DS/PN: 4.010	
Inv	ert Level (m) 105.439 Safety Factor 2.0	
Infiltration Coefficien	-	
Infiltration Coefficien	t Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. A	rea (m²) Depth (m) Area (m²) Inf. Area (m²)	
0.000 7881.0	0.0 1.200 9463.9 0.0	
Porous Car Pa	rk Manhole: 62, DS/PN: 6.000	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150	
Membrane Percolation		
Max Percolatio	n (1/s) 3750.0 Slope (1:X) 1000	
Safety	Factor 2.0 Depression Storage (mm)	0
	orosity 0.30 Evaporation (mm/day)	3
Invert Le	vel (m) 127.019 Membrane Depth (mm)	0
Porous Car Pa	rk Manhole: 63, DS/PN: 6.001	
	IK Mannole. 05, D5/IN. 0.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150	0.0
Membrane Percolation	(mm/hr) 1000 Length (m) 90	0.0
	n (l/s) 3750.0 Slope (1:X) 1000	
1	Factor 2.0 Depression Storage (mm)	0
	verosity 0.30 Evaporation (mm/day) vel (m) 126.255 Membrane Depth (mm)	3 0
		ũ là chí
Porous Car Pa	rk Manhole: 64, DS/PN: 6.002	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 90	0.0
Membrane Percolation		5.0
Max Percolatio		
-	Factor 2.0 Depression Storage (mm)	0
	vel (m) 125.537 Membrane Depth (mm)	3 0
		0
Porous Car Pa	rk Manhole: 67, DS/PN: 6.005	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 90	0.0
Membrane Percolation		5.0
Max Percolatio		
-	Factor 2.0 Depression Storage (mm)	0
	vel (m) 124.985 Membrane Depth (mm)	3 0
Invert he		~

Fairhurst		Page 9
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	brainage
Innovyze	Network 2020.1	
Porous Car Par	rk Manhole: 68, DS/PN: 6.006	
Infiltration Coefficient Base Membrane Percolation		
	n (1/s) 3750.0 Slope (1:X) 1000.0	
P	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/day)3	
Invert Le	vel (m) 123.644 Membrane Depth (mm) 0	
Porous Car Pa:	rk Manhole: 69, DS/PN: 6.007	
Infiltration Coefficient Base		
Membrane Percolation	(mm/hr) 1000 Length (m) 90.0 n (1/s) 3750.0 Slope (1:X) 1000.0	
	Factor 2.0 Depression Storage (mm) 0	
P	orosity 0.30 Evaporation (mm/day) 3	
Invert Le	vel (m) 122.396 Membrane Depth (mm) 0	
Porous Car Pa:	rk Manhole: 70, DS/PN: 6.008	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 150.0	
Membrane Percolation		
	n (1/s) 1250.0 Slope (1:X) 1000.0	
Salety P	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/day)3	
	vel (m) 121.478 Membrane Depth (mm) 0	
Porous Car Pa:	rk Manhole: 71, DS/PN: 6.009	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 100.0	
Membrane Percolation		
	n (1/s) 1388.9 Slope (1:X) 1000.0 Factor 2.0 Depression Storage (mm) 0	
	Factor2.0 Depression Storage (mm)0orosity0.30Evaporation (mm/day)3	
Invert Le	vel (m) 121.068 Membrane Depth (mm) 0	
<u>Cellular Stora</u>	ge Manhole: 77, DS/PN: 6.015	
Inv	ert Level (m) 114.261 Safety Factor 2.0	
Infiltration Coefficien Infiltration Coefficien	t Base (m/hr) 0.00000 Porosity 1.00	
Depth (m) Area (m²) Inf. A	rea (m²) Depth (m) Area (m²) Inf. Area (m²)	
0.000 4669.0	0.0 1.200 5904.1 0.0	
<u>Cellular Stora</u>	ge Manhole: 139, DS/PN: 7.023	
Inv	ert Level (m) 99.408 Safety Factor 2.0	
Infiltration Coefficien Infiltration Coefficien	t Base (m/hr) 0.00000 Porosity 1.00	
Depth (m) Area (m²) Inf. A	rea (m^2) Depth (m) Area (m^2) Inf. Area (m^2)	
0.000 1638.0	0.0 1.200 2399.0 0.0	
<u>Cellular Storag</u>	e Manhole: 154, DS/PN: 12.004	
Inv	ert Level (m) 113.427 Safety Factor 2.0	
Infiltration Coefficien Infiltration Coefficien	-	

		- 10						
Fairhurst		Page 10						
225 Bath Street								
Glasgow								
G2 4GZ		Micro						
Date 24/10/2024 15:32	Designed by apeters	Drainage						
File 20241024_PermDrain.mdx	Checked by	Diamage						
Innovyze	Network 2020.1							
	re Manhole: 154, DS/PN: 12.004 rea (m²) Depth (m) Area (m²) Inf. Area (m²)							
0.000 67.0	0.0 1.200 278.7 0.0							
Cellular Storag	e Manhole: 162, DS/PN: 13.006							
Invert Level (m) 98.449 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000								
Depth (m) Area (m²) Inf. A	rea (m²) Depth (m) Area (m²) Inf. Area (m²)							
0.000 72.4	0.0 0.770 195.1 0.0							
<u>Cellular Storag</u>	e Manhole: 177, DS/PN: 14.007							
Invert Level (m) 144.611 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000								
Depth (m) Area (m²) Inf. A	rea (m ²) Depth (m) Area (m ²) Inf. Area (m ²)							
0.000 200.0	0.0 1.200 513.0 0.0							

Fairhurs	t								1	Page 11
225 Bath	-	et								
Glasgow	2010									
G2 4GZ										Micco
Date 24/	10/20	24 15:32			Designed	l by apet	ers			Micro
File 202					Checked		010			Drainage
Innovyze					Network	-				
Nu	M umber c	A: anhole He, Foul Sew, of Input H of Onlin Rainfa:	real Redu Hot Star adloss Co age per h ydrograph e Control Ll Model Region gin for Fl	ction Fa Start (m: t Level eff (Glo} ectare (: s 0 Nu s 8 Numb <u>S</u> Scotland .ood Risk Anal	<u>Simulation</u> <u>Simulation</u> tor 1.000 A ins) 0 (mm) 0 bal) 0.500 Flo L/s) 0.000 mber of Offlir er of Storage <u>Synthetic Rainf</u> FSR M and Ireland Warning (mm) ysis Timestep DTS Status DVD Status nertia Status	Criteria dditional MADD Fa w per Pers he Controls Structures Fall Detail 5-60 (mm) Ratio R	Flow - % o: ctor * 10m Inlet (on per Day 3 0 Number 3 28 Number 5 15.200 Cv 0.250 Cv	f Total Fl ³ /ha Stora Coeffiecie (1/per/da c of Time/i c of Real (Summer) C (Winter) C 300. (Extended (C	ow 0.000 ge 2.000 nt 0.800 y) 0.000 Area Dia Fime Con .750 .840 0 .840 0 N N N N))) trols 0
			ate Chang Half Drain	e (%)	s not been cal First (X)		the struc		Water	
PN	Name	Storm		Change	Surcharge	Flood	Overflow	Act.	(m)	(m)
1.000	1	120 Winte	er 200	+37%					127.423	-0.382
1.000		120 Winte		+37%					127.423	
1.002	3	120 Winte	er 200	+37%					126.574	-0.229
1.003		120 Winte		+37%					126.476	-0.224
1.004		120 Winte		+37%					126.369	-0.210
1.005		120 Winte		+37%					126.291	
1.006	7	60 Winte 180 Winte		+37% +37%					125.972	
1.007		180 Winte 120 Winte			200/15 Winter				125.417	
1.009		120 Winte		+37%	LUU, IU WINCEL				124.375	-0.472
1.010		120 Winte		+37%					124.342	-0.483
1.011		120 Winte		+37%					124.279	
1.012	13	60 Winte		+37%					124.042	-0.492
1.013	14	60 Winte		+37%					123.381	
1.014	15	60 Winte		+37%					121.240	-0.495
1.015	16	60 Winte		+37%					119.815	-0.488
1.016	17	60 Winte		+37%					119.758	-0.470
1.017	18 19	60 Winte 60 Winte		+37% +37%					119.723 119.699	
1.018	20	60 Winte		+37%					119.699	
1.020	20	60 Winte		+37%					119.225	-0.736
1.020	22	60 Winte		+37%					119.135	
1.022	23	60 Winte	er 200	+37%					119.104	-0.488
1.023	24	60 Winte		+37%					118.731	
1.024	25	60 Winte		+37%					118.258	-0.491
1.025	26	60 Winte		+37%					117.833	
1.026	27	60 Winte	er 200	+37%					117.314	-0.739
					©1982-2020	Innovyze				
· · · · · · · · · · · · · · · · · · ·										

Fairhurst		Page 12
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diamaye
Innovyze	Network 2020.1	L

	/	Flooded	/		Half Drain	Pipe		
	•		•	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	0.000	0.29		60	154.7	OK	
1.001	2	0.000	0.44		66	220.5	OK	
1.002	3	0.000	0.70			243.1	OK	
1.003	4	0.000	0.72			250.3	OK	
1.004	5	0.000	0.75			258.1	OK	
1.005	6	0.000	0.75			331.4	OK	
1.006	7	0.000	0.94		39	480.8	OK	
1.007	8	0.000	0.74		100	380.0	OK	
1.008	9	0.000	1.49			588.8	SURCHARGED	
1.009	10	0.000	0.01			590.7	OK	
1.010	11	0.000	0.00			602.9	OK	
1.011	12	0.000	0.00			627.1	OK	
1.012	13	0.000	0.00			692.0	OK	
1.013	14	0.000	0.00			768.7	OK	
1.014	15	0.000	0.00			820.0	OK	
1.015	16	0.000	0.00			820.1	OK	
1.016	17	0.000	0.01			837.3	OK	
1.017	18	0.000	0.01			847.2	OK	
1.018	19	0.000	0.00			934.3	OK	
1.019	20	0.000	0.00			989.2	OK	
1.020	21	0.000	0.00			1011.8	OK	
1.021	22	0.000	0.00			1011.8	OK	
1.022	23	0.000	0.00			1101.6	OK	
1.023	24	0.000	0.00			1124.0	OK	
1.024	25	0.000	0.00			1128.2	OK	
1.025	26	0.000	0.00			1142.4	OK	
1.026	27	0.000	0.00			1145.7	OK	

Fairhurst		Page 13
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diamaye
Innovyze	Network 2020.1	

	US/MH			Climate	First (X)		First (Z)	Overflow	Level	Surcharged Depth
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)
1.027	28	1440 Winter	200	+37%					117.231	-0.711
1.028	29	1440 Winter	200	+37%					117.225	-0.658
1.029		1440 Winter	200	+37%					117.191	-0.162
1.030		1440 Winter	200	+37%	200/15 Summer				117.173	1.127
2.000	32	180 Winter	200	+37%					127.349	-0.420
2.001	33	240 Winter	200	+37%					126.810	-0.385
2.002	34	360 Winter	200	+37%					126.201	-0.362
2.003 2.004	35 36	480 Winter 480 Winter	200 200	+37% +37%					125.463 125.065	-0.356 -0.295
2.004	37	480 Winter	200	+37%					124.976	-0.295
2.006	38	480 Winter	200	+37%					124.895	-0.291
2.007	39	480 Winter	200	+37%					124.835	-0.277
3.000	40	60 Winter	200	+37%					127.733	-0.452
2.008	41	60 Winter	200	+37%					124.505	-0.454
2.009	42	60 Winter	200	+37%					116.491	-0.431
2.010	43	60 Winter	200	+37%					110.635	-0.407
2.011	44	60 Winter	200	+37%					108.650	-0.393
2.012	45	60 Winter	200	+37%					107.319	-0.284
2.013		1440 Winter	200	+37%	000 (700				106.967	-0.089
2.014		1440 Winter	200		200/720 Winter				106.860	0.144
2.015		1440 Winter 60 Winter	200		200/180 Summer				106.858	0.543
4.000 4.001	49 50	60 Winter	200 200	+37% +37%					127.476 126.251	-0.316 -0.153
4.001	51	60 Winter	200	+37%					126.136	-0.137
4.003	52	60 Winter	200	+37%					126.019	-0.134
4.004	53	60 Winter	200	+37%					125.925	-0.139
5.000	54	120 Winter	200	+37%					127.621	-0.528
4.005	55	120 Winter	200	+37%					125.207	-0.392
4.006	56	120 Winter	200	+37%					115.277	-0.391
4.007	57	120 Winter	200	+37%					107.230	-0.273
4.008	58	120 Winter	200	+37%					106.330	-0.596
4.009		1440 Winter	200	+37%					105.803	-0.533
4.010		1440 Winter	200	+37%					105.796	-0.243
4.011	61	480 Summer	200	+37%					105.223	-0.599
6.000	62	120 Winter	200	+37%					127.179	-0.440
6.001 6.002	63 64	240 Winter 360 Winter	200 200	+37% +37%					126.431 125.760	-0.424 -0.377
6.003	65	360 Winter	200	+37%					125.585	-0.403
6.004	66	360 Winter	200	+37%					125.369	-0.374
6.005		60 Winter		+37%					125.248	
6.006	68	180 Winter	200	+37%					123.944	-0.300
6.007	69	240 Winter	200	+37%					122.735	-0.261
6.008	70	360 Winter	200	+37%					121.846	-0.232
6.009	71	360 Winter	200	+37%					121.644	-0.024
6.010	72		200	+37%					120.970	-0.494
6.011	73		200	+37%					120.535	-0.494
6.012	74		200	+37%					120.401	-0.498
6.013	75		200	+37%					116.758	-0.899
6.014 6.015		1440 Winter 1440 Winter	200 200	+37% +37%					114.998 114.904	-0.284 -0.257
6.015		1440 Winter 1440 Winter	200	+37%					114.904	-0.149
7.000	79	60 Winter	200	+37%					126.668	-0.159
7.001	80	60 Winter	200	+37%					125.602	-0.169
7.002	81	60 Winter	200	+37%					124.158	-0.171
7.003	82	60 Winter	200	+37%					122.840	-0.170
7.004	83	60 Winter	200	+37%					121.276	-0.166
7.005	84	60 Winter	200	+37%					119.736	-0.161
					©1982-2020 I	nnourre				

Fairhurst		Page 14
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diginada
Innovyze	Network 2020.1	

		Flooded			Half Drain	-		
DN		Volume (m³)		Overflow		Flow	Status	Level
PN	Name	(m-)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.027	28	0.000	0.00			396.6	OK	
1.028	29	0.000	0.00			396.6	OK	
1.029	30 31	0.000	0.00			241.3	OK	
1.030 2.000	31	0.000	0.00 0.20		99	106.5	SURCHARGED*	
2.000	33	0.000	0.20			145.6	OK	
2.002	34	0.000	0.33			176.2	OK	
2.003	35	0.000	0.35			176.9	OK	
2.004	36	0.000	0.51			178.5	OK	
2.005	37	0.000	0.52			178.8	OK	
2.006	38	0.000	0.53			179.3	OK	
2.007	39	0.000	0.57			184.5	OK	
3.000	40	0.000	0.14		26	140.2	OK	
2.008	41	0.000	0.13			221.7 221.7	OK	
2.009 2.010	42 43	0.000	0.18			221.7	OK OK	
2.010	43	0.000	0.25			221.0	OK	
2.012	45	0.000	0.55			221.7	OK	
2.013	46	0.000	0.43			200.0	OK	
2.014	47	0.000	0.07			40.0	SURCHARGED	
2.015	48	0.000	0.00			15.4	SURCHARGED	
4.000	49	0.000	0.46		41	306.0	OK	
4.001	50	0.000	0.91			328.9	OK	
4.002	51	0.000	0.95			331.0	OK	
4.003	52	0.000	0.96			333.2	OK	
4.004 5.000	53 54	0.000	0.94 0.04		58	418.5 40.7	OK OK	
4.005	55	0.000	0.26			437.6	OK	
4.006	56	0.000	0.27		00	437.5	OK	
4.007	57	0.000	0.58			437.6	OK	
4.008	58	0.000	0.00			437.6	OK	
4.009	59	0.000	0.00			149.3	OK	
4.010	60	0.000	0.00			13.6	OK	
4.011	61	0.000	0.00			13.5	OK	
6.000	62	0.000	0.16			105.1	OK	
6.001	63	0.000	0.19			118.9	OK	
6.002 6.003	64 65	0.000	0.30 0.24		221	115.1 118.0	OK	
6.003	66	0.000	0.24			121.6	OK OK	
6.005	67	0.000	0.40		46	260.7	OK	
6.006	68	0.000	0.50			325.2	OK	
6.007	69	0.000	0.61			390.1	OK	
6.008	70	0.000	0.69		213	407.1	OK	
6.009	71	0.000	1.00		146	347.1	OK	
6.010	72	0.000	0.00			352.4	OK	
6.011	73	0.000	0.00			354.6	OK	
6.012	74	0.000	0.00			365.0	OK	
6.013 6.014	75 76	0.000	0.00 0.00			328.1 270.2	OK	
6.014 6.015	76 77	0.000	0.00			54.8	OK OK	
6.015	78	0.000	0.00			25.8	OK	
7.000	79	0.000	0.19			10.8	OK	
7.001	80	0.000	0.14			15.1	OK	
7.002	81	0.000	0.13			17.1	OK	
7.003	82	0.000	0.14			19.4	OK	
7.004	83	0.000	0.16			21.9	OK	
				1002-202		<u></u>		

Fairhurst		Page 15
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diamage
Innovyze	Network 2020.1	

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
7.005	84	0.000	0.18			30.0	OK	

Fairhurst		Page 16
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diamage
Innovyze	Network 2020.1	

	US/MH				Climate	First ()			First (Z)	Overflow	Water Level	Surcharged Depth
PN	Name	Stor	rm	Period	Change	Surcharg	ge	Flood	Overflow	Act.	(m)	(m)
7.006	85	60 W	inter	200	+37%						113.262	-0.146
7.007	86	60 W	inter	200	+37%						106.647	-0.107
8.000	87		inter	200	+37%						126.066	-0.115
8.001	88		inter	200	+37%						124.389	-0.072
8.002	89		inter	200	+37%	200/30 W:					123.041	0.249
8.003	90		inter	200	+37%	200/30 St					121.957	0.758
8.004 8.005	91 92		inter inter	200 200	+37% +37%	200/15 W: 200/15 St					120.766 120.186	1.064 1.415
8.005	93		inter	200	+37%	200/15 St					119.511	1.548
8.007	94		inter	200	+37%	200/15 St					118.604	0.852
8.008	95		inter	200	+37%	200/15 Si					117.091	0.935
8.009	96	60 W	inter	200	+37%	200/15 St	ummer				115.876	0.883
8.010	97	60 W	inter	200	+37%						113.732	-0.127
8.011	98		inter	200	+37%	200/60 W:					112.551	0.001
8.012	99		inter	200	+37%	200/30 Si					112.054	0.254
8.013	100		inter	200	+37%	200/30 Si					111.590	0.490
8.014	101		inter	200	+37%	200/15 W:					111.064	1.014
8.015 8.016	102 103		inter inter	<mark>200</mark> 200	+37% +37%	200/15 Sı	ummer				110.434 107.711	0.934 -0.239
8.010	103		inter	200	+37%	200/30 W:	inter				107.293	0.684
8.018	101		inter	200	+37%	200/30 Si					106.962	1.226
8.019	106		inter	200	+37%	200/30 Si					106.765	1.382
8.020	107		inter	200	+37%	200/30 Si	ummer				106.606	1.439
8.021	108	60 W	inter	200	+37%	200/30 Si	ummer				106.449	1.408
8.022	109	60 W	inter	200	+37%	200/30 Si	ummer				106.288	1.384
7.008	110		inter	200	+37%	200/30 Si	ummer				106.125	1.279
9.000	111		inter	200	+37%						115.076	-0.149
9.001	112		inter	200	+37%						114.953	-0.140
9.002 9.003	113		inter inter	200	+37% +37%						114.825	-0.123
9.003	114 115		inter	200 200	+37%						114.330 112.611	-0.147 -0.101
9.005	115		inter	200	+37%	200/60 W:	inter				109.413	0.063
9.006	117		inter	200	+37%	200/60 W:					108.045	0.410
9.007	118		inter	200	+37%	200/15 W:					106.203	0.806
7.009	119	60 W	inter	200	+37%	200/30 Si					105.826	1.124
7.010	120	60 W	inter	200	+37%	200/15 W:	inter				105.185	1.126
7.011	121		inter	200	+37%	200/15 W:					104.814	0.968
7.012	122		inter	200	+37%	200/15 St					104.439	0.984
7.013	123		inter	200	+37%	200/15 Si					104.060	0.859
7.014	124		inter	200	+37%	200/15 St					103.676	
7.015 7.016	125 126		inter inter	<mark>200</mark> 200	+37% +37%	200/30 Sı	ummer				103.289 102.427	0.155 -0.494
7.010	120		inter	200	+37%						102.427	-0.494
7.018	128		inter	200	+37%						102.127	-0.487
7.019	129		inter	200	+37%						102.095	-0.489
7.020	130		inter	200	+37%						102.056	-0.498
7.021	131		inter	200	+37%						101.296	-0.447
7.022	132	60 W	inter	200	+37%						100.914	-0.447
10.000	133		inter	200	+37%						101.572	-0.178
10.001	134		inter	200	+37%						100.885	-0.166
10.002	135		inter	200	+37%	200/00					100.205	-0.040
10.003 10.004	136 137		inter inter	200 200	+37% +37%	200/60 W: 200/15 St					100.159	0.030 0.155
10.004		1440 Wi		200		200/15 St 200/1440 W:					100.073 100.067	0.039
7.023		1440 Wi		200	+37%	200/360 W:					100.067	0.134
7.023		1440 Wi		200	+37%	200/360 W					100.068	0.150
11.000	141		inter	200	+37%		-				113.593	-0.499
						©1982-202	20 In:	novyze				

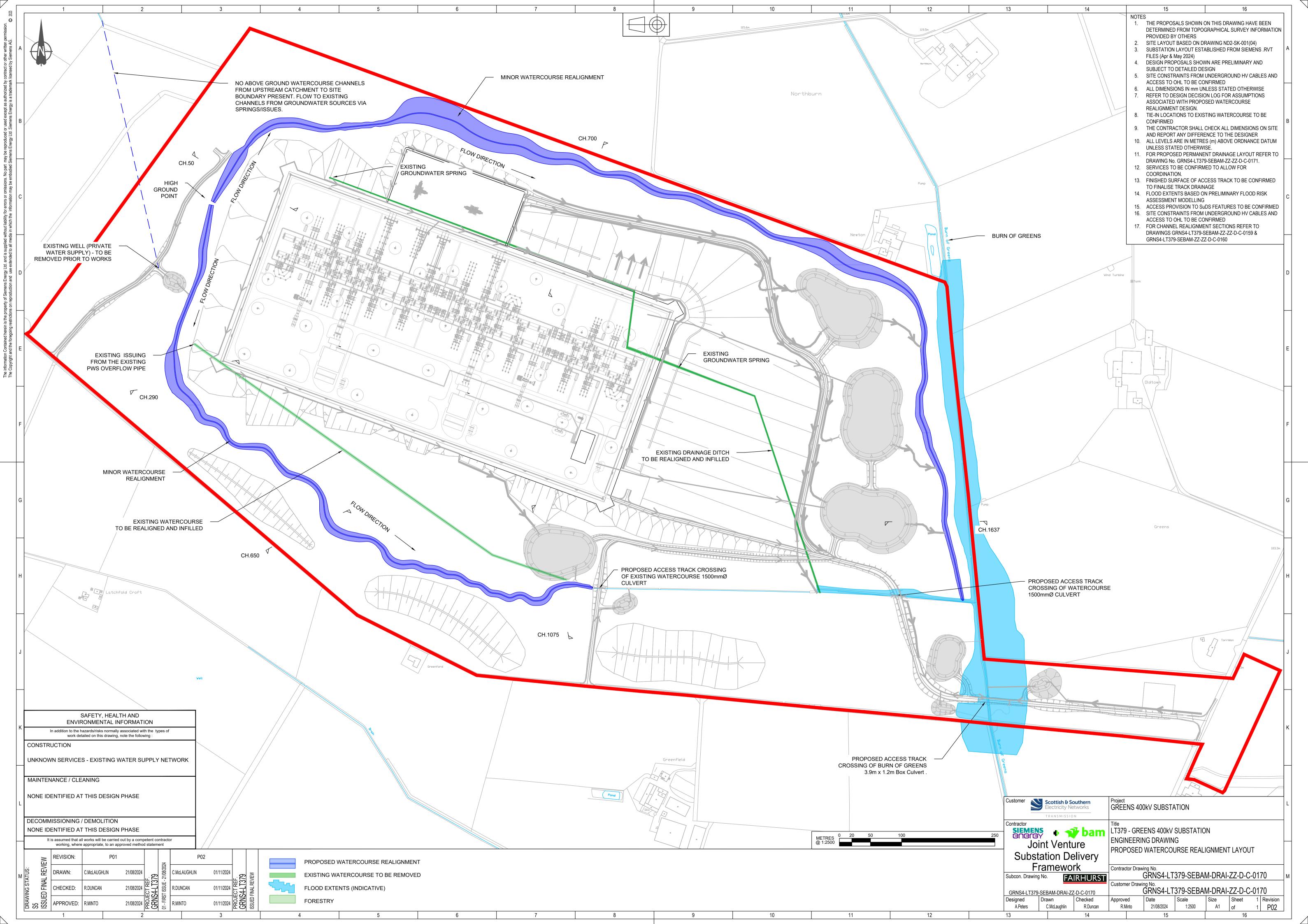
Fairhurst		Page 17
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diginada
Innovyze	Network 2020.1	I

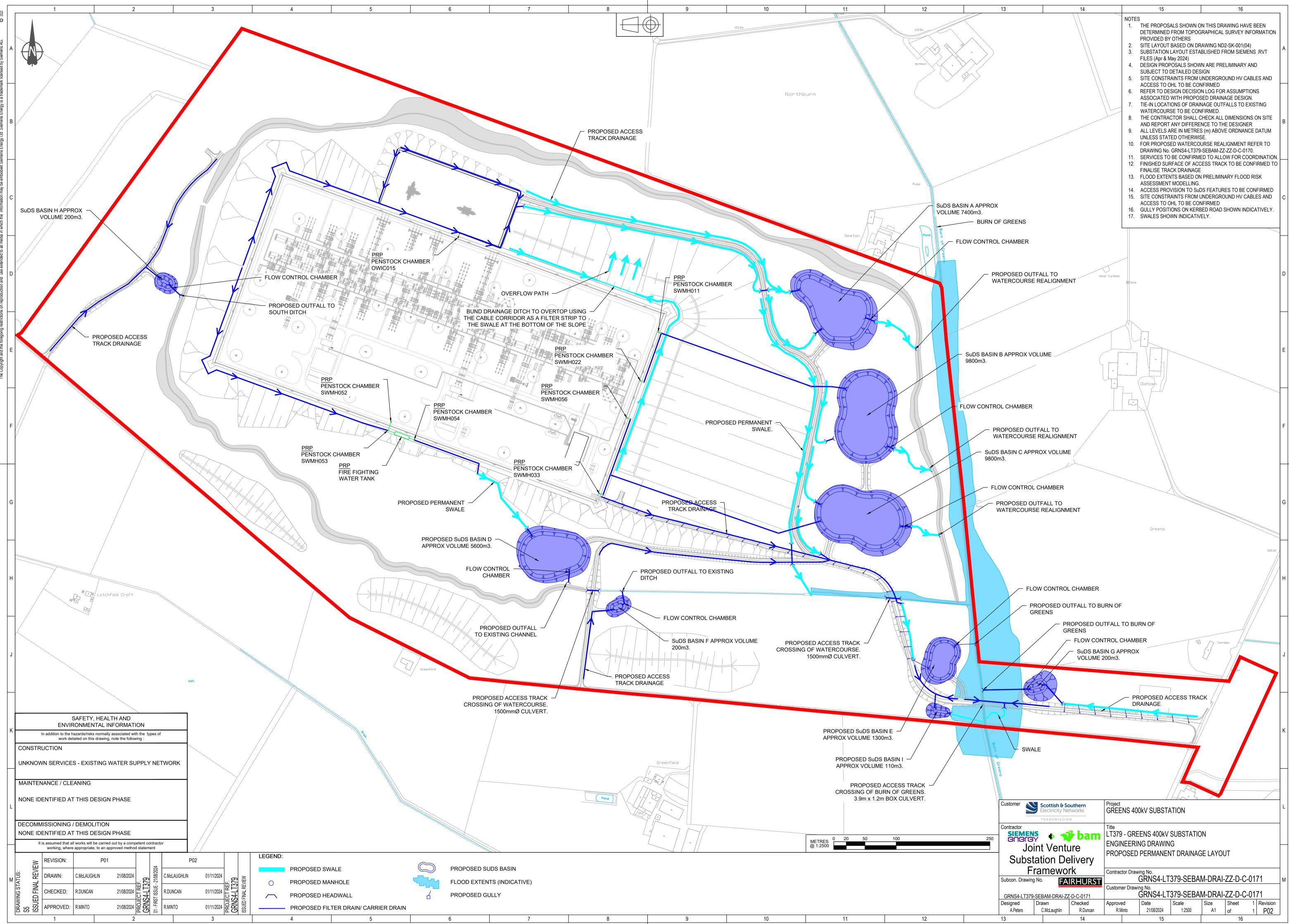
		Flooded			Half Drain	Pipe		
	US/MH	Volume		Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
7.006	85	0.000	0.27			39.6	OK	
7.007	86	0.000	0.54			47.4	OK	
8.000	87	0.000	0.48			24.7	OK	
8.001	88	0.000	0.80			50.4	OK	
8.002	89	0.000	1.11				SURCHARGED	
8.003	90	0.000	1.23				SURCHARGED	
8.004	91	0.000	1.45				SURCHARGED	
8.005	92	0.000	2.30				SURCHARGED	
8.006	93	0.000	2.41 2.22				SURCHARGED	
8.007 8.008	94 95	0.000	1.97				SURCHARGED SURCHARGED	
8.008	95	0.000	2.11				SURCHARGED	
8.010	97	0.000	0.63			107.6	OK	
8.011	98	0.000	1.02				SURCHARGED	
8.012	99	0.000	1.22				SURCHARGED	
8.013	100	0.000	1.32				SURCHARGED	
8.014	101	0.000	1.44				SURCHARGED	
8.015	102	0.000	1.94				SURCHARGED	
8.016	103	0.000	0.45			190.9	OK	
8.017	104	0.000	0.62			209.1	SURCHARGED	
8.018	105	0.000	0.75			215.4	SURCHARGED	
8.019	106	0.000	0.84			220.4	SURCHARGED	
8.020	107	0.000	1.12			223.4	SURCHARGED	
8.021	108	0.000	1.09			227.6	SURCHARGED	
8.022	109	0.000	1.36			230.8	SURCHARGED	
7.008	110	0.000	1.18			269.2	SURCHARGED	
9.000	111	0.000	0.25			12.1	OK	
9.001	112	0.000	0.30			13.9	OK	
9.002	113	0.000	0.43			23.5	OK	
9.003	114	0.000	0.26			29.1	OK	
9.004	115	0.000	0.58			48.3	OK	
9.005	116	0.000	1.05				SURCHARGED	
9.006	117	0.000	0.96				SURCHARGED	
9.007	118	0.000	1.51				SURCHARGED	
7.009 7.010	119 120	0.000	1.00				SURCHARGED FLOOD RISK	
7.010	120	0.000	0.98				FLOOD RISK	
7.011	121	0.000	1.22				FLOOD RISK	
7.012	122	0.000	2.06				SURCHARGED	
7.014	124	0.000	2.00				SURCHARGED	
7.015	125	0.000	1.35				SURCHARGED	
7.016	126	0.000	0.00			361.2	OK	
7.017	127	0.000	0.00			364.4	OK	
7.018	128	0.000	0.00			366.7	OK	
7.019	129	0.000	0.00			366.7	OK	
7.020	130	0.000	0.00			368.8	OK	
7.021	131	0.000	0.00			368.7	OK	
7.022	132	0.000	0.00			368.8	OK	
10.000	133	0.000	0.10			6.2	OK	
10.001	134	0.000	0.16			13.3	OK	
10.002	135	0.000	0.62			22.5	OK	
10.003	136	0.000	0.72				FLOOD RISK	
10.004	137	0.000	1.26				FLOOD RISK	
10.005	138	0.000	0.15				SURCHARGED	
7.023	139	0.000	0.00				SURCHARGED	
7.024	140	0.000	0.00			6.3	SURCHARGED	
			@1	000 0000) Innowyza			

Fairhurst		Page 18
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diamage
Innovyze	Network 2020.1	

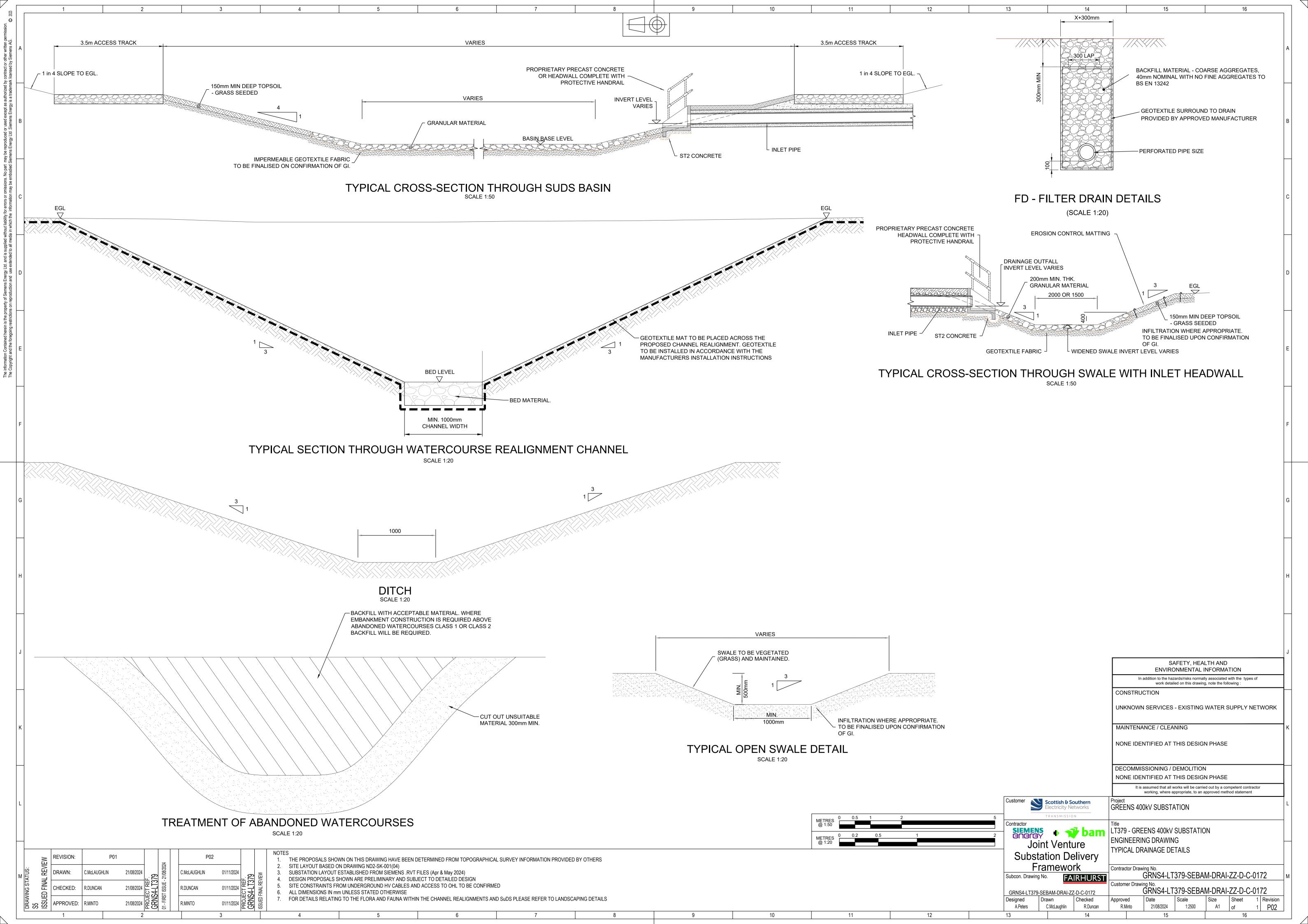
		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
11.000	141	0.000	0.00			139.0	OK	

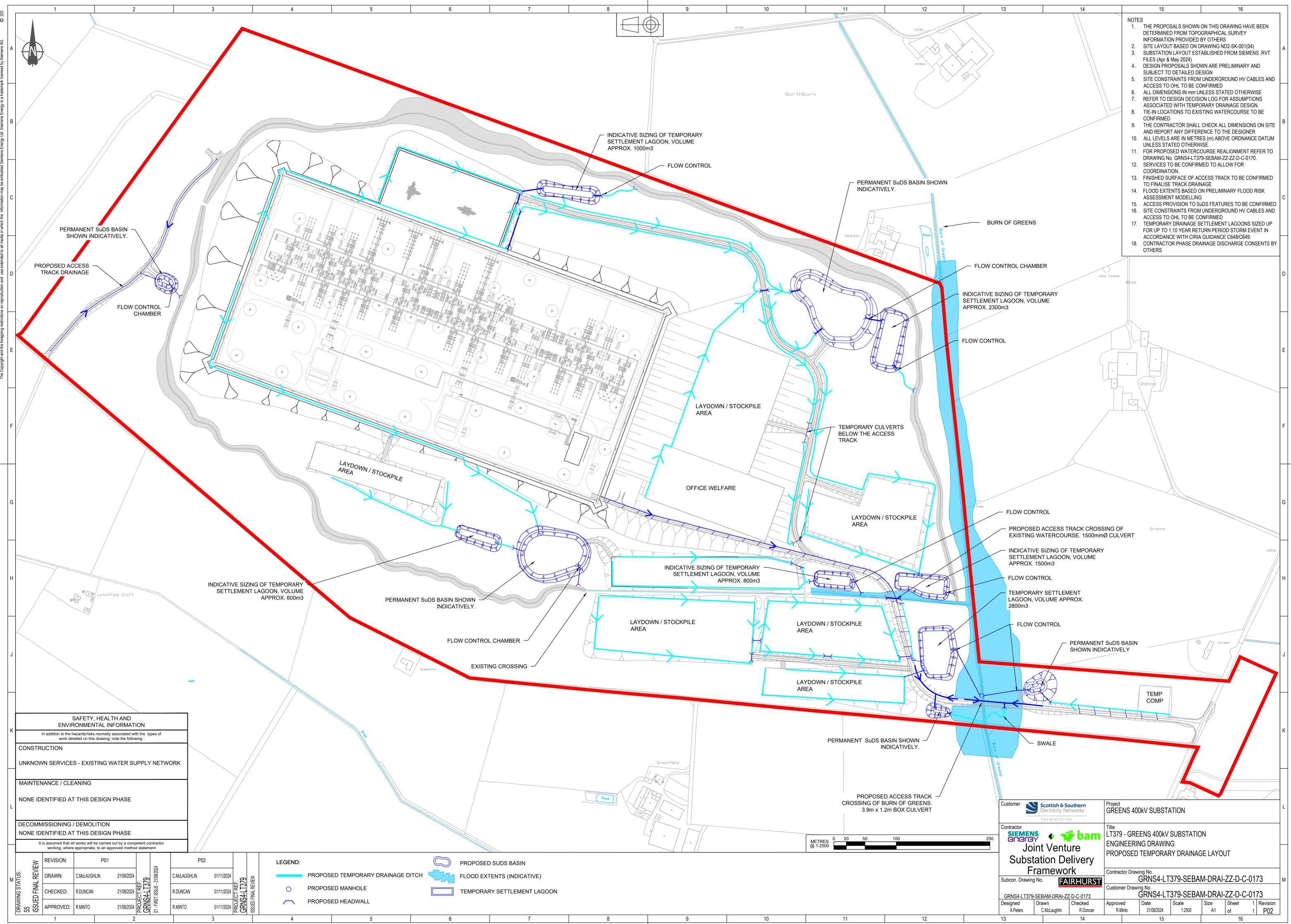
Fairhurst		Page 19
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diginada
Innovyze	Network 2020.1	


										Water	Surcharged
	US/MH		Return	Climate	First	: (X)	First (Y)	First (Z)	Overflow	Level	Depth
PN	Name	Storm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)	(m)
11.001	142	60 Winter		+37%						112.163	-0.499
11.002	143	60 Winter		+37%						111.296	-0.497
11.003	144	60 Winter		+37%						110.942	-0.493
11.004	145	60 Winter		+37%						108.418	-0.464
11.005	146	60 Winter		+37%						108.319	-0.484
11.006	147	60 Winter		+37%						107.901	-0.477
11.007	148	60 Winter		+37%						107.619	-0.591
11.008	149	60 Winter		+37%						106.617	-0.487
12.000	150	60 Winter		+37%						118.789	-0.173
12.001	151	60 Winter		+37%						117.396	-0.146
12.002	152	60 Winter		+37%						116.740	-0.170
12.003		1440 Winter			200/30					114.642	0.767
12.004		1440 Winter			200/15					114.641	0.989
12.005	155	1440 Winter			200/15	Summer				114.644	1.097
13.000		1440 Winter		+37%						102.475	-0.500
13.001	157	60 Winter		+37%						102.244	-0.499
13.002	158	60 Winter		+37%						102.168	-0.499
13.003	159	60 Winter		+37%						102.051	-0.498
13.004	160	360 Winter	200	+37%						101.894	-0.500
13.005		1440 Winter		+37%						98.662	-0.200
13.006		1440 Winter		+37%						98.661	-0.088
13.007	163	1440 Winter		+37%						98.661	-0.070
13.008		1440 Winter		+37%						98.201	-0.499
14.000	165	60 Winter		+37%						152.052	-0.173
14.001	166	60 Winter		+37%						149.616	-0.145
14.002	167	60 Winter		+37%						149.102	-0.115
14.003	168	60 Winter		+37%						148.529	-0.096
14.004	169	60 Winter		+37%						147.702	-0.111
15.000	170	60 Winter		+37%						148.708	-0.158
15.001	171	60 Winter	200	+37%						148.453	-0.144
15.002	172	60 Winter	200	+37%						148.133	-0.126
15.003	173	60 Winter		+37%						147.766	-0.098
15.004	174	60 Winter		+37%						146.888	-0.073
14.005	175	60 Winter			200/30					146.637	0.412
14.006	176	1440 Winter			200/15					146.069	1.148
14.007		1440 Winter			200/15					146.066	1.230
14.008	178	1440 Winter	200	+37%	200/15	Summer				146.075	1.273

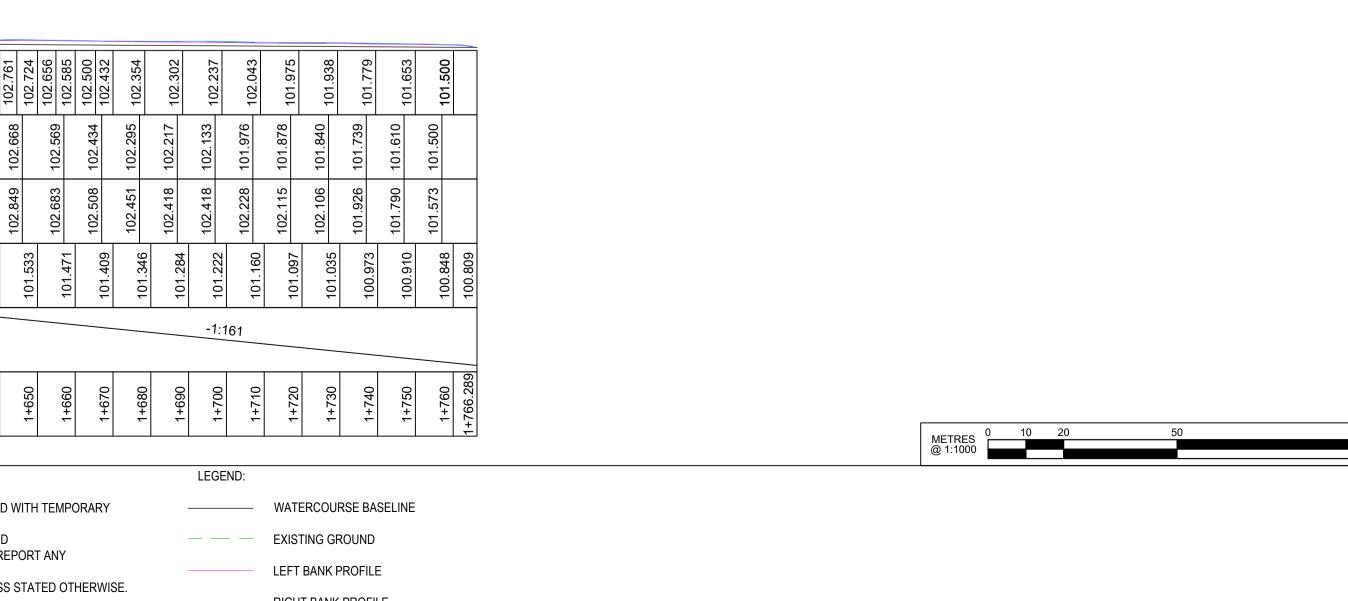

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(1/s)	Status	Exceeded
11.001	142	0.000	0.00			235.2	OK	
11.002	143	0.000	0.00			310.5	OK	
11.003	144	0.000	0.00			823.1	OK	
11.004	145	0.000	0.01			1075.8	OK	
11.005	146	0.000	0.00			1293.6	OK	
11.006	147	0.000	0.01			1530.6	OK	
11.007	148	0.000	0.00			1530.6	OK	
11.008	149	0.000	0.00			1530.6	OK	
12.000	150	0.000	0.12			9.2	OK	
12.001	151	0.000	0.27			15.6	OK	
12.002	152	0.000	0.14			19.9	OK	
12.003	153	0.000	0.06			3.6	SURCHARGED	
12.004	154	0.000	0.02			0.9	SURCHARGED	
12.005	155	0.000	0.01			0.6	SURCHARGED	

Fairhurst		Page 20
225 Bath Street		
Glasgow		
G2 4GZ		Micro
Date 24/10/2024 15:32	Designed by apeters	Drainage
File 20241024_PermDrain.mdx	Checked by	Diginada
Innovyze	Network 2020.1	


	US/MH	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
13.000	156	0.000	0.00			3.7	OK	
13.001	157	0.000	0.00			34.1	OK	
13.002	158	0.000	0.00			53.2	OK	
13.003	159	0.000	0.00			73.7	OK	
13.004	160	0.000	0.00			40.6	OK	
13.005	161	0.000	0.00			21.4	OK	
13.006	162	0.000	0.00			15.1	OK	
13.007	163	0.000	0.00			1.4	OK	
13.008	164	0.000	0.00			1.4	OK	
14.000	165	0.000	0.12			11.0	OK	
14.001	166	0.000	0.28			16.9	OK	
14.002	167	0.000	0.48			23.1	OK	
14.003	168	0.000	0.62			35.0	OK	
14.004	169	0.000	0.51			42.9	OK	
15.000	170	0.000	0.20			8.7	OK	
15.001	171	0.000	0.28			13.7	OK	
15.002	172	0.000	0.40			19.9	OK	
15.003	173	0.000	0.61			32.3	OK	
15.004	174	0.000	0.79			39.0	OK	
14.005	175	0.000	0.82			83.0	SURCHARGED	
14.006	176	0.000	0.52			17.1	FLOOD RISK	
14.007	177	0.000	0.09			2.5	FLOOD RISK	
14.008	178	0.000	0.01			1.3	FLOOD RISK	


Appendix 7 Proposed Drainage Drawings

7	8	9	10	11	12	
			•	•	•	



7	8	9	10	11	12	

	155																					
	150 145 140 135 130 125 120 115 110 105																					
DATUM = 100.00mAOD Existing Ground Levels (m AOD)		149.991 149.878	149.848	149.834 149.757 149.691	149.567 149.511	149.502	010.041	149.011	146.030	146.111	146.004	145.864	145.716	145.469	145.321	144.981	144.680	144.253	143.807	143.365	143.115 142.929	142.463
Proposed Left Bank Leve (m AOD)	els	150.188 1. 150.154 1.		150.135 14 150.033 14	┟╴╵╴╵┎╴	149.916	149.579		J	146.529 1 146.594 1		146.315	146.075	145.738	145.503	145.118	144.711	144.236				142.877 142.352
Proposed Right Bank Lev (m AOD)	vels	149.799 1. 149.692 1.	<u> </u>	149.598 1 149.437 1		148.985 1	148.701 1.			145.805 1, 145.762 1,		145.513 1.	145.326 1.	145.097 1	144.969 1	144.608	144.261	143.892 1.			_	141.975
Proposed Bed Levels (m AOD)	148.999	148.607 1 148.215 1		147.431 1 147.039 1	┍┸───┬┸─				145.024 1 144 750		144.144	143.836	143.528	143.220	142.913	142.605	142.297	141.989	141.682	141.374	141.066	140.758
Proposed Bed Gradient					:26		-	~		-		~	-	-	~		:32	~	-	-		~
Chainage (m)	000+0	0+010 0+020	0+030	0+040 0+050	090+0	04070	0+080	0+090	0+110	0+120	0+130	0+140	0+150	0+160	0+170	0+180	0+190	0+200	0+210	0+220	0+230	0+240
140		125.820 126.282		125.605 125.950 125.422 125.670	123.112 125.223 125.276 125.276 125.367 125.067	124.949 124.896		121.706 123.881 123.881 123.699 123.807	123.226	123.048	122.736 122.331 122	122.554 122.050 119.948 122.199	122.434 121.760 119.597 122.068	122.244 121.503 119.245 121.755	118.894 121.866 121.075 121.344 121.344	121.345 120.711	120.782 120.292	120.318 119.917	119.884 119.519	119.516 119.167	119.077 118.734	116.584 116.584 118.717 118.483 118.497 116.584 116.584
Proposed Bed Gradient — hainage (m)	0+710 0+720	0+730	0+740 0+750	0+760	0+770	062+0	0+800	0+810	0+820	-1:28 08+0	0+840	0.000+0	0+870	0+880	0+890	006+0	0+910	0+920	0+030	066-0		096+0
145— 140— 135— 130— 125— 120— 115— 110— 115— 110— 105—	MATCH LINE 0+		* *						+0	-					+0	+0						+55
Existing Ground Levels m AOD)	105.842	105.861 105.522	105.481	105.405 105.361 105.174	104.992 104.878	104.702	104.500	104.185	103 709	103.487	103.393 103.341	103.274	103.240	103:131	103.125	102.832	102.703 102.761	102.724 102.656	102.585	102.432	102.354	102.302
roposed Left Bank Levels n AOD)	105.500 105.592	105.529	105.318 105.230	105.130	104.883 104.615	104.445	104.137	103.894	103.679	103.526	103.353	103.158	103.038	103.021	102.857	102 553	102.668		60C.201	102.434	102.295	102.217
roposed Right Bank Levels m AOD)	105.982 106.100	106.007	105.754 105.555	105.479	105.192 104 947	104.753	104.556	104.216	103.903	103.678	103.478	103.377	103.304	103.315	103.118	102 903	102.849		102.083	102.508	102.451	102.418
Proposed Bed Levels m AOD)	103.884	103.766 103.648	103.529	103.411 103.293	103.175	103.056	102.938	102.820	102.583	102 435	102.336	102.203	102.070	101.937	101.804	101.646	101.596	101.533	101.471	101.409	101.346	101.284
Proposed Bed Gradient	·1:85	1										<u> </u>	-1:7	5	<u> </u>							
chainage (m)	1+450	1+460 1+470	1+480	1+490 1+500	1+510	1+520	1+530	1+540	1+560	1+570	1+580	1+590	1+600	1+610	1+620	1+630	1+640	1+650	1+660	1+670	1+680	1+690
REVISION: P01 DRAWN: C.McLAUGHLIN CHECKED: R.DUNCAN APPROVED: R.MINTO	21/08/2024 21/08/2024 21/08/2024	PROJECT REF. GRNS4-LT379 01 - FIRST ISSUE - 21/08/2024	C.McLA R.DUN R.MINT		01/11/202 01/11/202 01/11/202	ЕF. 1379	REVIEW	2. F [3.]	Refer T Drainac Tie-in LC The Com Differe	ENSIONS O DESIG GE DESIG DCATION: NTRACTO INCE TO ELS ARE	N DECIS N. S TO EXI R SHALI THE DES	ION LOG STING W L CHECK	FOR AS ATERCO ALL DIN	SUMP ⁻ DURSE IENSIO	TIONS A TO BE NS ON	CONFII SITE AI	RMED ND REP	ORT AN	NY			

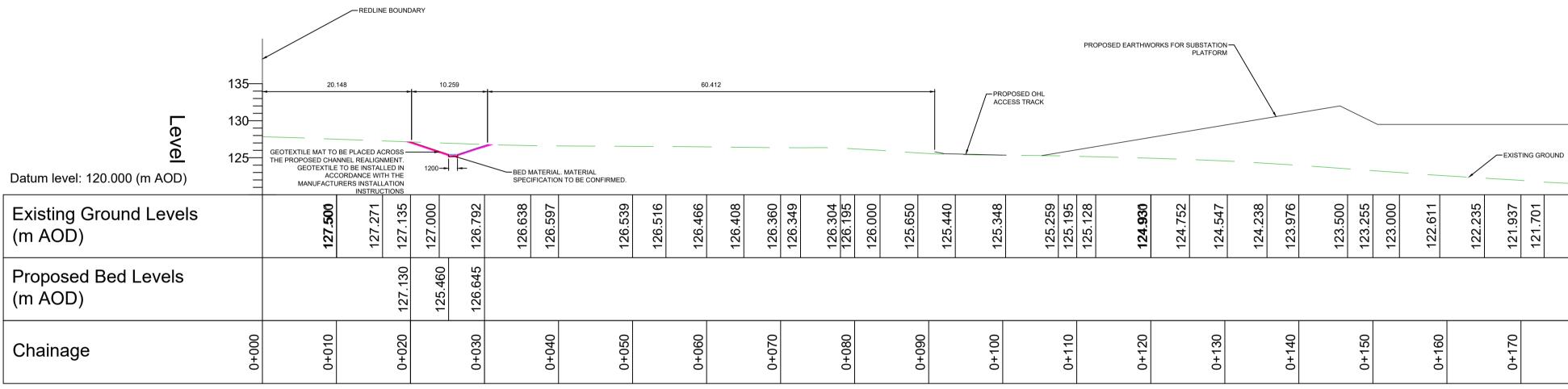
																																																						MATCH LINE		A
12 144.000 145.116 142.297 144.680	261 144	143.892 144.236 141.682 144.236	143.441 143.754 4 143.754	143.008 143.305 143.115 141.066 142.929	142.576 142.877	451 141.975 142.352 14	141.361 141.722 141.371 141.371	139.907 140.792 141.256 12000 10000	140.640 141.505	140 298		138.793 139.196 139.023 137.274 138.565	136.459	137.340 137.289 137.207	136.013 136.441	.700 135.759 136.081	89 135.754 136.027	239 135 078 136 443		131.394	133.487 133.487 133.487 130.557 141.410 135.597	130.202 141.110	985 1.00.000 141.523	138 730 140 897	.484	233 130.322 140.334 139. 430.300 440.340 430	.982 1.30.20 137 07	1.732 1.01.010 1.00.009 1	481 137.648 139.120 138.	131.294 138.028	130.002 130.1/3 1 136.000 137.015	130.388 136 005	-478	130.227 135.095 136.979	100.000 100.490	129.	133 084 135 170 124	557 134.702	133 201 134 175 133	801 133 557	132 350 132 832 133	131.710 132.279 131.	20 131.105 131.786 1	127.469 130.576 131.314 130.935	127.219 130.080 130.864 130.465	126.968 129.651 130.413 130.000	276		524	125.965 128.003 128.291 128.199	<u>125.714</u> 127.343 127.545 127.564	<u>125.464</u> <u>126.709</u> <u>126.987</u> <u>126.949</u>	5.195 126.242 126.588 126.	.869 125.954 126.361	124.518 125.820 126.282 126.000 126.282 126.000	В С
0+190	0+200	0+210	0+220	0+230	0+240	0+250	0+260	04740	0+270	0+280	0+290	0+300	0+310	0.520		m I	4	0+350	0+360	0+370	0+380	0+390	0+400	0+410	4	64	0+440	4	0+460	0+470	0+480	0+490	0+200	0+510	0+520	0+530	0+540	042+0	0.570		000000000000000000000000000000000000000	009+0	0+610	0+620	0+630	0+640	0+650	0+660	0+670	0+680	0+690	002+0			0+730	D
	118.191 120.318 119.917	117.840 119.884 119.519	117.488 119.516 119.			110.400	-	116.058	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1+000 / 115.531 117.048 117.099 116.935	116.846 116.712 116. 116.968 116.712 116.	115.268 115.268 116.437 116.483 116.		1+030 / 114.737 116.035 116.271 116.018 116.018	1+040 114.430 115.995 116.224 116.000	1+050 114.118 115.712 116.380 115.870	1+060 113.806 116.752 116.178 116.178	1+070 113.494 115.946 117.179 116.600	113.182 116.234 117.337 1	1+090 112.870 116.406 117.393 117.004	112.558 116.365 117.320 116.	+110 112.	111.934 115.965 116.514	111.		1+150 114.598 115.457 114.975	-1:32 110.687 114.205 115.100 114.	1+170 110.375 113.907 114.687 114.339	1+180 113.521 114.111 113.834	109.751 112.980 113.314 113.	1+200 109.439 112.450 112.566 112.517	1+210 109.127 111.943 111.934 112.015	1+220 108.815 111.438 111.378 111.421	1+230 108.503 110.898 110.790 110.878	1+240 108.191 110.373 110.187 110.318 110.318	1+250 107.879 109.542 109.721	1+260 107.567 109.378 108.909 109.149	1+270 107.255 108.800 108.268 108.699	1+280 106.960 108.235 107.745 108.086	1+290 / 106.507 107.803 107.274 107.555	$\frac{1+300}{60} \xrightarrow{4}_{60} \frac{106.077}{10} \frac{107.404}{106.952} \frac{106.952}{107.178} \frac{107.178}{106.952}$	1+310 / 105.647 107.278 106.575 106.901	105.421 107.008 106.387	105.303 106.793 106.199	105.185 106.619 105.067	+350 105.985 105.985 -	104.948 106.196 105.947 106 106 105.947 106 106 105	104.712 106.160 105.926	5.973 105.831 103.	104.475 105.924 105.772 105. 104.475 105.924 105.772 105.	410 104.357 105.868 105.641 105. 410 104.357 105.868 105.641 105.	+420 105.830 105.602 105.71 104.239 105.71		104.002 105 082 105	00.302 100.	E
FIRME AND F	H1M 102.849 102.668 101.533	ANY	Abra 102.508 102.434 101.409	1+680 101.346 102.451 102.295	1+690 101 284 102.418 102.217 102.302		191 160 102.228 101.976 1+710 101.160	HIT IN THE TOT INTENT. THE TOT INTENT INTO INTENT INTO INTENT INTO INTENT INTO INTENT INTENT. THE TOT INTENT INTENT INTO INTENT INTENT. THE TOT INTENT INTENT INTENT INTENT INTENT. THE TOT INTENT INT	101.09/ 102.106 101.840	0101.035 0101.0	E BASE IND FILE		1+760 100.848 101.573 101.500 101	1+766.289 100.809					٥					10			METRE: @ 1:100		10	20			50	12				100	S Subcon	tor JC UDS Drawir 34-LT37	bint ' tatic ram ng No. 9-SEBA	Ven Ven Dn D Dewo E	Ure elive ork ARHI Check	am Pry URST 157 ed Duncan	Proje GRE Title LT31 PRC	DNSTRI IKNOW AINTEN DNE IDI CCOMM DNE IDI It It CCOMM DNE IDI It T T T T T T T T T T T T T T T T T T	In additic RUCTIC WN SE NANCE DENTIF DENTIF Tis assur Worki 400kV REEN ED WA REEN ED WA rawing N GR awing N GR	ENVIE on to the h work det DN E / CLE FIED AT FIED AT FIED AT Ined that al ing, where S UBS S 400k ATERC No. NS4-L	ES - EXI EANING T THIS / DEMC T THIS all works w e appropri STATIO KV SUB COURS COURS LT379 LT379 Scal	ENTAL isks norma this drawi (ISTING G DESIG OLITIO DESIG will be carr riate, to an ON BSTAT SE LON D-SEB/ D-SEB/ D-SEB/	G WAT G WAT G WAT GN PH, DN GN PH, TION NG SE(BAM-D Size	RMATIC ciated with the followin ER SUF ASE ASE ASE y a compe ed method	PPLY N	etwo ctor H 0157 0157 1 Re		к м

		MATCH LINE
0+230 141.066 142.676 142.877 142.873 0+240 140.451 141.975 142.877 142.873 0+250 140.451 141.975 142.332 141.371 0+260 140.451 141.361 141.722 141.371 0+260 140.113 141.722 141.371 141.371 0+260 139.602 140.702 141.505 141.371 0+200 139.602 141.506 141.505 140.907 0+300 138.063 140.600 141.505 140.500 0+300 138.063 138.193 139.196 138.505 0+310 137.246 138.193 139.605 138.505 0+310 135.756 136.061 137.206 138.505 0+310 135.756 136.061 137.507 138.507 0+310 135.756 136.061 137.507 138.507 0+310 135.756 136.061 137.506 138.507 0+3200 135.756 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>954 126.361 126. 820 126.282 126. 0</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	954 126.361 126. 820 126.282 126. 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1+430 104.121 105.951 105.708 1+440 1 105.951 105.516 105.516 1+440 1 104.002 105.982 105.685 1+450 582 105.500 105.682 1+450 582 105.500 105.682 1 103.884 106.400 105.842 1 0 105.842 105.842
101.39 0.01.01.39 0.01.101.39 101.39 101.30 101.30 101.30 101.30 101.30 101.30 101.30 101.30 101.10 101.10 101.10 101.10 101.10 101.30 101.10 101.10 101.30 101.10 101.10 101.30 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10 101.10	SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION In addicin to the hazard/diverse normally associated with the ry and discrete to the holdwing: not the following: CONSTRUCTION UNKNOWN SERVICES - EXISTING WATER SUPPLY MAINTENANCE / CLEANING NONE IDENTIFIED AT THIS DESIGN PHASE DECOMMISSIONING / DEMOLITION NONE IDENTIFIED AT THIS DESIGN PHASE It is assumed that all works will be carried out by a competence working, where approvals, is an approved matrixed statem Contractor Subscription Contractor Drawing No. GRNS4-LT379-SEBAM-DRAI-ZZ-D- Designed Dealer Alter Stategring Agents Alter Stategring Agents Alter Stategring Agents Market LT379-SEBAM-DRAI-ZZ-D- Contractor Drawing No. GRNS4-LT379-SEBAM-DRAI-ZZ-D- Contractor Drawing N	Y NETWORK K ontractor nent L DRTH

3																					
;																					
)	150 145 140 135 130 125 120 115 110 105																				
	Existing Ground Levels (m AOD)	149	2 149.402 5 149.196		2 148.682 148.552 148.420	148.	2 147.702 147.500 147.236		3 146.143	145.451	144.834	144	144 143	143.773	143. 143.	143.666	143.690	143.	143.500	2 143.472	144.056
	Proposed Left Bank Levels (m AOD)	0 149.650	9 149.402 6 149.165		9 148.682 6 148.420		0 147.702 3 147.236		5 146.143	5 145.451	5 144.834		7 144.001		9 143.713	1 143.682	3 143.690		3 143.500	3 143.472	
	Proposed Right Bank Levels (m AOD) Proposed Bed Levels	850 457 149.700	363 149.479 370 149.266		383 148.799 490 148.546		704 147.590 310 146 913		524 145.795	130 145.305	737 144.845 564	312 144.373 a67	207 144.187 880 144.001	-		701 144.361	538 144.493	_	512 144.243	449 144.293	405
	(m AOD) Proposed Bed Gradient	148.850	148.063	147.277	146.883	-1:25	145.704 145.310	144.917	144.524	144.130	143.737 143.564	143.312 10 142 067		142.826	142.764	-1:159	142.638	142.575	142.512	142.449	142.405
	Chainage (m)	0+000 0+010	0+020 0+030	0+040	0+050	020+0	080+0	0+100	0+110	0+120	0+130		0+150	0+170	0+180	0+190	0+200	0+210	0+220	0+230	0+240
) 	155		MATCH LINE																		
	DATUM = 100.00mAOD Existing Ground Levels (m AOD) Proposed Left Bank Levels (m AOD) Proposed Right Bank Levels (m AOD)	132.752 132.410 132.410 132.758 132.410 132.410	132.407 132.250 132.250 132.086 132.077 132.077	131.792 131.969 131.969 131.861	131.507 131.445 131.678 131.498 131.248 131.248	131.512 130.796 130.796	131.469 130.314 130.500 131.000 130.314 130.314	131.184 129.413 129.413	128.925	130.780 128.492 128.460	130.238 128.032 128.032		127.163	128.818 126.412 126.412	100 101	127.398 124.697 124.697	126.936 124.127 124.127	126.514 123.783 123.783	126.009 123.473 123.473	125.636 122.988 122.988	122.708 125.575 122.543 122.708
Č.	Proposed Bed Levels (m AOD)	131.226 131.430	130.876	129.993	129.551 129.110	128.668		127.785 127.344	126.902	126.461	126.019	125.578	125.136	124.695	124.203	123.370	122.924	122.416	121.907	121.399	120 890
	Proposed Bed Gradient								-1:23												
	Chainage (m)	0+730	0+750	0/1/0	0+790	0+800	0+810	0+820	0+840	0+820	0+860	0+870	0+880	0+890		0+920	0+630	0+940	0+950	0+00	04070
	STATES OF A CHECKED: SS SS SS APPROVED: R.MINTO 1	P01 21/08 21/08 21/08	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IRST ISSUE - 21	Pi McLAUGHLIN DUNCAN MINTO	02 01/1 01/1 01/1 3	1/2024 1/2024 1/2024 1/2024	GKNS4-L I 3/9 ISSUED FINAL REVIEW	2. F 3 4	REFER DRAINA TIE-IN L THE CO DIFFERI	TO DES GE DES OCATIO NTRAC ⁻ ENCE T(IGN DEC SIGN. ONS TO E TOR SH/ O THE D	EXISTING ALL CHEC DESIGNEF)g for <i>f</i> Water()k all d	ASSUMF COURSI IMENSI	RWISE PTIONS AS E TO BE C ONS ON S NCE DATI	ONFIRI	MED D REPC	ORT ANY	Y OTHERV	

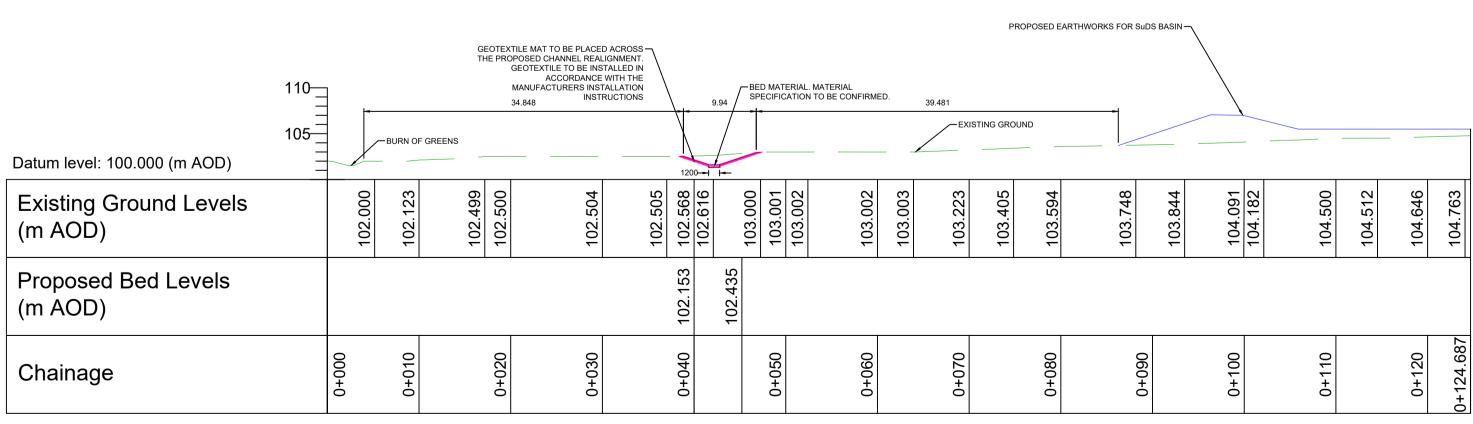
				METRES 0 10 20 @ 1:1000	50	
LEGEND:						
WATERCOUR	RSE BASELINE					
— — EXISTING GR	OUND					
LEFT BANK P	ROFILE					
RIGHT BANK	PROFILE					
7	8	9	10	11	12	

_																	
122.543	122.162	121.521	120.937	120.515	120.173	119.781	119.324	118.610	117.846	117 133	116 464	116.208	116.000	115.873		116.000	114.506
122.543	122.313	121.485	120.950	120.509	120.202	119.782	119.324	118.566		117.557 117.133	116.538	116.208	116.000	116.000 115.873	116.000		114.749
125.575	125.543	125.137	124.864	124.265	123.773	122.922	122.317	121.684		120.807 120.307	119.872	119.094	118.538	118.246 117 852	117.410		116.404
120.890	120.382	119.874	119.365	118.857	118.348	117.840	117.332	116.823	116.315	115 807	115 298	114.930	114.821	114 736		114.651	114.573
				-1:2	20									-1:	117		
0	0	0	0	0	0	0	0	Q	0	c			0		,	0	0
0/6+0	0+980	066+0	1+000	1+010	1+020	1+030	1+040	1+050	1+060	1+070	1+080	1+090	1+100	1+110		1+120	1+130


																																																				=	
)
144.991	145.605	145.955	145.976 145.966		145.914 145.751	145.543	145.168	144.976 144.818	144.516	144.316	144_148			143.411	143.034	142.647	142.250	141.746	141.118	140.889 140.594	140.371 140.185	140.000 139.847	139,484			138.450	137.662	136.903	136.672	136.839	136.832	136.664	136.412	136.113 126.055	135.943	135.784 135.784	135.657	135.539	135.629	135.757	135.777	135.712	135.587	135.312	134.998	134.656	134.305	133.931	133.295	132.580		132.250 132.185	_
144.657 144.991	145.605	145.955	145.976	146.014 146.005		145.543	145.168	144.818	144.516	144.316	144_148	· o	30.0	143.411	143.034	142.647	142.250	141.746	141.118		140.388 140.185	139.948	139.499	130 084		138.450	137.334	136.903 136.756			136.887	136.664		136.164	135.943	135.784		135.539	135.629	135.757	135.776	135.712		135.443	134.998	134.656	134.305	133.931	133.295		132.410 132 250	27.27 27.27	E
146.216 146.927	148.445	148.422	148.260	147.914 147.760		146.922	146.494	145.996	145.741	145.225	144.653	901 176	3.96	143.679	143.398	143.045	142.642	142.371	142.113		141.702 141.451	141.135	140.349	139 749	si c	CUC.851	139.433	139.372 139.167		38.	137.700	137.230		136.723	136.652	136.551		136.502	136.531	136.517	136.483	136.378		136.151	135.649	135.230	134.744	134.357	134.052		132.752 132.407	37	
142.363	142.321	142.278	142.236	142.194	142.153	142.005	141.861	141.717	141.573	141.429	141.285		141.141	140.997	140.853	140.709	140.564	140.382	139.994	139.466	138.937	138.408	137,880	137 351	S S		136.293	135.765 135.542	135.465	135.331	135.198	135.064	134.930	134.797	134.663	134.530	134.434	134.145	133.921	133.696	133.472	133.247	133.023	132.798	132.574	132.349	132.125	131.900	131.675		131.226 131.132 130.876	20.0cl	_
	-1	:237										1:69											-1:	19									-1:75											-1:	45							F	F
0+250	0+260	0+270	0+280	0+290	0+300	0+310	0+320	0+330	0+340		0+360	01070	0+2/0	0+380	0+390	0+400	0+410	0+420	0+430	0+440	0+450	0+460	0+470	0+480		÷	0+500		0+520	0+530	0+540	0+550	0+560	0+570	0+580	0+590	0+000	0+610	0+620	0+630	0+640	0+650	0+660	0+9+0	0+680	0+690	0+200	0+710	0+720	0+730	0+740	}	
																_																																				_	+

45.605	
45.955	
145.976 145.966	
146.014 146.009	
145.914 145.751	
45.543 45.373	
45.168	
44.9/6 44.818	
44.516	
44.316	
44.148	
43.801	
43.411	
43.034	
42.647	
42.250	
1.746	
41.118 40.889	
40.594	
40.185	
40.000 39.847	
39.484	
39.084	
38.450	
37.662	
36.903	
36.672	
36.839	
36.832	

		Н
		J
	SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION	
	In addition to the hazards/risks normally associated with the types of work detailed on this drawing, note the following :	
	CONSTRUCTION	
	UNKNOWN SERVICES - EXISTING WATER SUPPLY NETWORK	
	MAINTENANCE / CLEANING	к
	NONE IDENTIFIED AT THIS DESIGN PHASE	
	DECOMMISSIONING / DEMOLITION NONE IDENTIFIED AT THIS DESIGN PHASE	
	It is assumed that all works will be carried out by a competent contractor working, where appropriate, to an approved method statement	
Customer Scottish & Southern Electricity Networks	Project GREENS 400kV SUBSTATION	L
100 Contractor	Title LT379 - GREENS 400kV SUBSTATION ENGINEERING DRAWING	
Joint Venture Substation Delivery	PROPOSED WATERCOURSE LONG SECTION - SOUTH	
Framework Subcon. Drawing No. FAIRHURST	Contractor Drawing No. GRNS4-LT379-SEBAM-DRAI-ZZ-D-C-0158	M
GRNS4-LT379-SEBAM-DRAI-ZZ-D-C-0158	Customer Drawing No. GRNS4-LT379-SEBAM-DRAI-ZZ-D-C-0158	
DesignedDrawnCheckedA.PetersC.McLaughlinR.Duncan	Approved R.MintoDateScaleSizeSheet1RevisionR.Minto21/08/2024AS SHOWNA1of1P02	
13 14	15 16	·


0 The information Contained herein is the property of Siemens Energy Ltd. and is supplied without liability for errors or omissions. No part may be reproduced or used except as authorized by contract or other written property and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG. The Copyright and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG. The Copyright and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG. The Copyright and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG. The Copyright and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG. The Copyright and the foregoing restrictions on the trademark licensed by Comparison and the foregoing restrictions on the trademark licensed by Comparison and the foregoing restrictions on the trademark licensed by Comparison and the foregoing trademark licensed by Comparison and trademark licensed by Comparison and trademark licensed by Comparison and trademark licensed by Comparison 1

NORTH REALIGNMENT CH700 - CROSS SECTION SCALE: 1:500

9

			P01	4		P02				NOTE 1.	ALL DIMENSIONS IN mr	n UNLESS STATED OTHERWISE		
	DRAWN:	C.McLAUGH	LIN 21/08/2024	- 79 21/08/202	(C.McLAUGHLIN	01/11/2024		/IEW	2.	DRAINAGE DESIGN.	CISION LOG FOR ASSUMPTIONS AS		
ING ST		R.DUNCAN	21/08/2024	ECT REI 34-LT3 ST ISSUE -	F	R.DUNCAN	01/11/2024	ECT REI	FINAL REV	4.		ALL CHECK ALL DIMENSIONS ON SI		
DRAM S5	=	R.MINTO	21/08/2024	PROJE GRN 01 - FIRS	F	R.MINTO	01/11/2024	GRNG	ISSUED	5.	ALL LEVELS ARE IN ME	TRES (m) ABOVE ORDNANCE DATU	M UNLESS STATED OTHERWISE.	
	1		2				3				4	5	6	

NORTH WATERCOURSE CROSS SECTION CH50 - CROSS SECTION SCALE: 1:500

IGNMENT CH1637 - CROSS SECTION SCALE: 1:500

LEGEND:

@ 1:500	
<u>روا المعامية المعامة ا</u>	

11

12

10

— — EXISTING GROUND

7

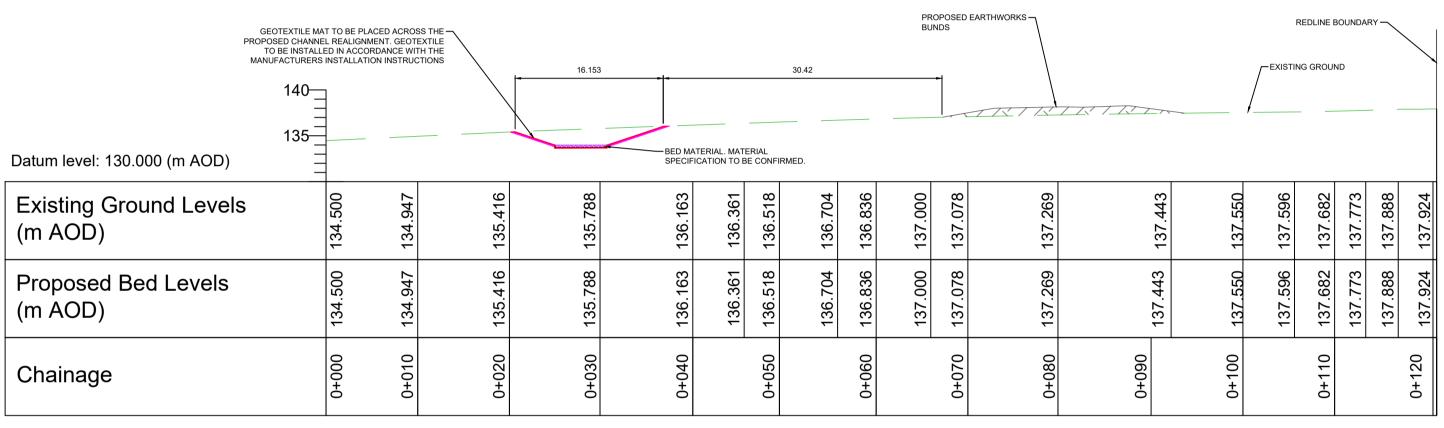
8

									В
									с
									D
									E
-EXISTING GROUND	184 252	266	237	252 306	376				F
0+170 121.937 121.701 0+180 121.020	0+190			0+210 121.252 121.306	0+220 121.376				G
					ċ				н
				CONSTRU UNKNOWI MAINTEN/ NONE IDE	ENVIRG addition to the ha: work detail ICTION N SERVICES ANCE / CLEA NTIFIED AT SSIONING / NTIFIED AT assumed that all		NFORMA y associated v , note the follo WATER S N PHASE	with the types of owing : SUPPLY NETW	J ORK K
50		Scottish & So Electricity Ne TRANSMISSIC	» V bam	Project GREENS 40	5 D0kV SUBST EENS 400kV	10 ATION			25
	Subs F Subcon. Drawin	int Vent tation De ramewo g No. Drawn C.McLaughlin	elivery rk IRHURST		NORTH W/ wing No. GRNS4-L1 ving No.	ATERCOURS	M-DRAI-	S SECTIONS -ZZ-D-C-0159 -ZZ-D-C-0159 Sheet 1 F of 1	

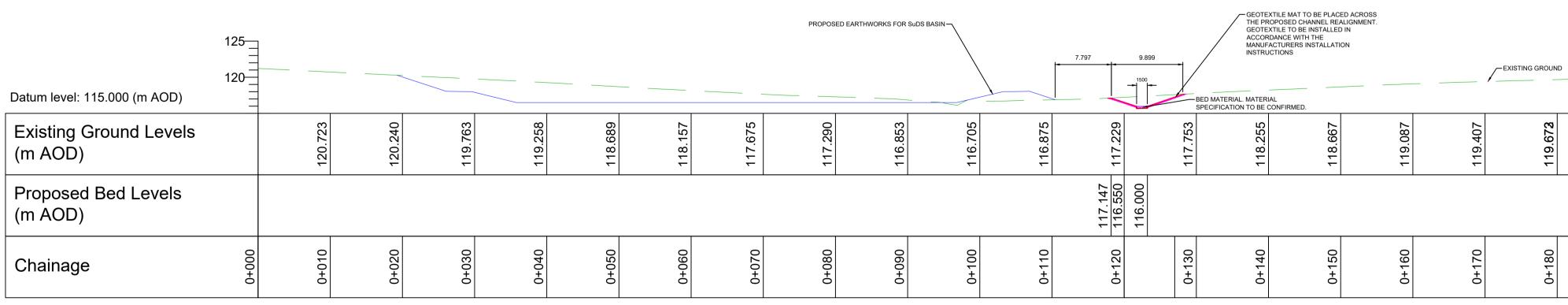
13

14

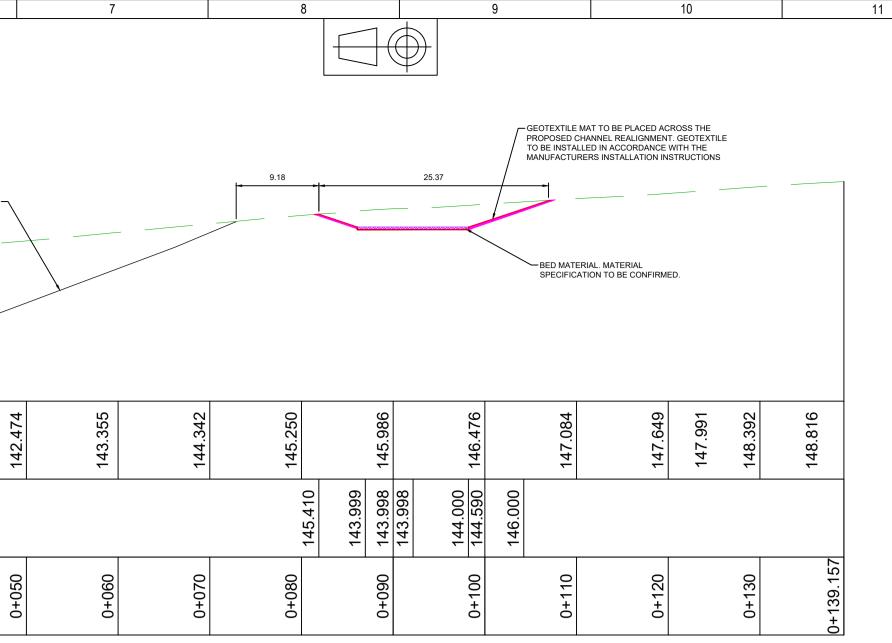
15


16

	150 145			PROF	POSED EARTHWORKS F	OR SUBSTATION - PLATFORM
	140					
	135					
Datum level: 125.000 (m AOD)	130					
Existing Ground Levels (m AOD)		141.162	141.217	141.248	141.711	
Proposed Bed Levels (m AOD)						
Chainage	000+0	0+010	0+020	0+030	0+040	


1

0


The information Contained herein is the property of Siemens Energy Ltd. and is supplied without liability for errors or omissions. No part may be reproduced or used except as authorized by contract or other written p The Copyright and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG. The Copyright and the foregoing restrictions on reproduction and use extended to all media in which the information may be embodied Siemens Energy Ltd. Siemens Energy is a trademark licensed by Siemens AG.

SOUTH REALIGNMENT CH650 - CROSS SECTION SCALE: 1:500

		EW	REVISION:		P01	4	P02				NOTE 1.	ALL DIMENSIONS IN mm	UNLESS STATED OTHERWISE		
r	TATUS:	REV	DRAWN:	C.McLAUGH	ilin 21/08/2024	=. 79 21/08/202⁄	C.McLAUGHLIN	01/11/2024		/IEW	2.	DRAINAGE DESIGN.	SION LOG FOR ASSUMPTIONS ASSO		
	AWING ST	ED FINAL	CHECKED:	R.DUNCAN	21/08/2024	ECT REI	R.DUNCAN	01/11/2024	ECT REI S4-LT3	FINAL REV	4.	THE CONTRACTOR SHA DIFFERENCE TO THE DE	LL CHECK ALL DIMENSIONS ON SITE SIGNER	AND REPORT ANY	
	draw S5		APPROVED:	R.MINTO	21/08/2024	PROJE GRNG 01 - FIRE	R.MINTO	01/11/2024	GRNG	ISSUED	5.	ALL LEVELS ARE IN MET	RES (m) ABOVE ORDNANCE DATUM	UNLESS STATED OTHERWISE.	
			1		2			3				4	5	6	Γ

SOUTH REALIGNMENT CH290 - CROSS SECTION SCALE: H 1:500,V 1:500. DATUM: 125.000

SOUTH REALIGNMENT CH1075 - CROSS SECTION SCALE: 1:500

9

10

METRES 0 5 10 @ 1:500

11

12

12

13

119.981

14

15

16

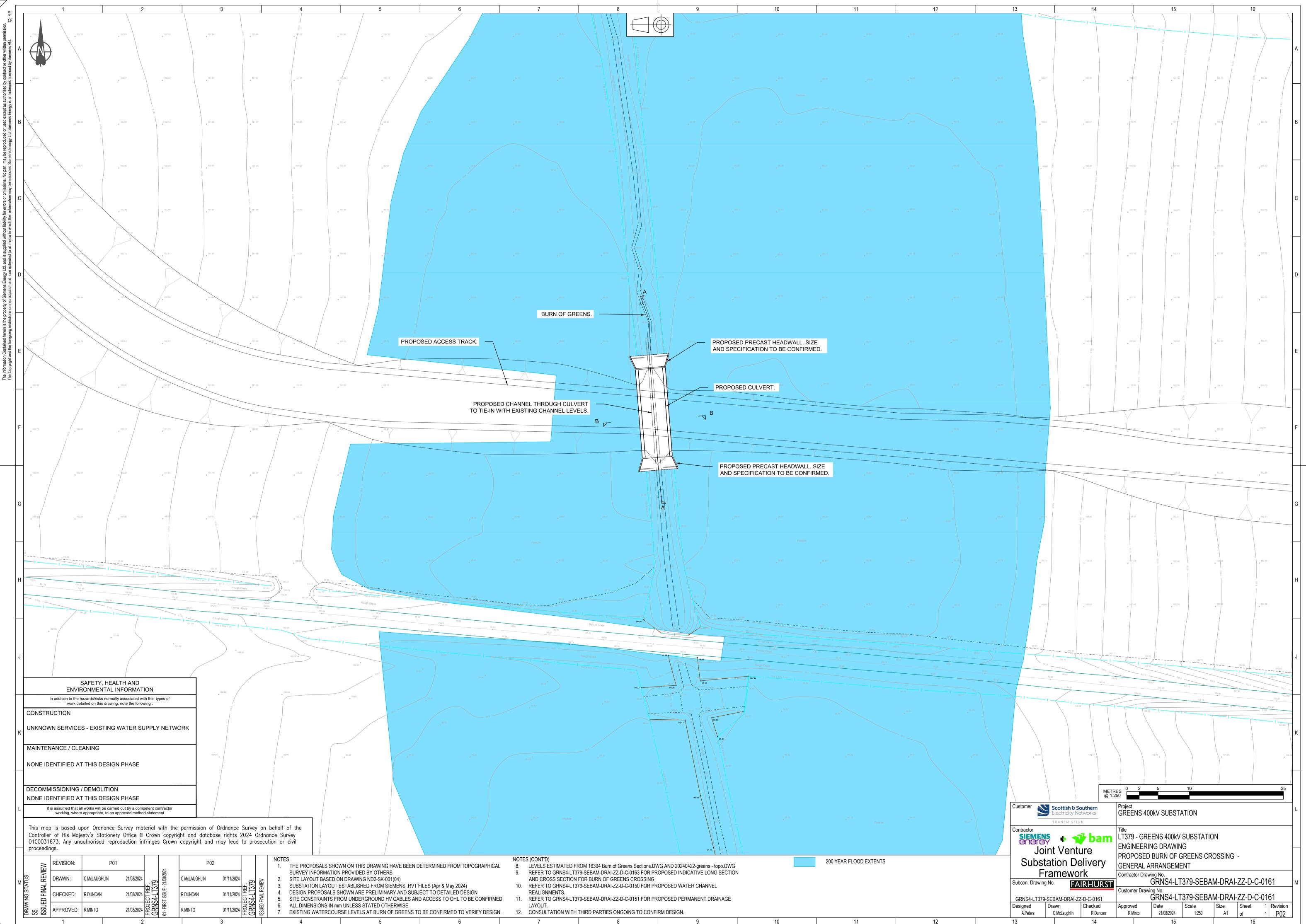
— — — EXISTING GROUND

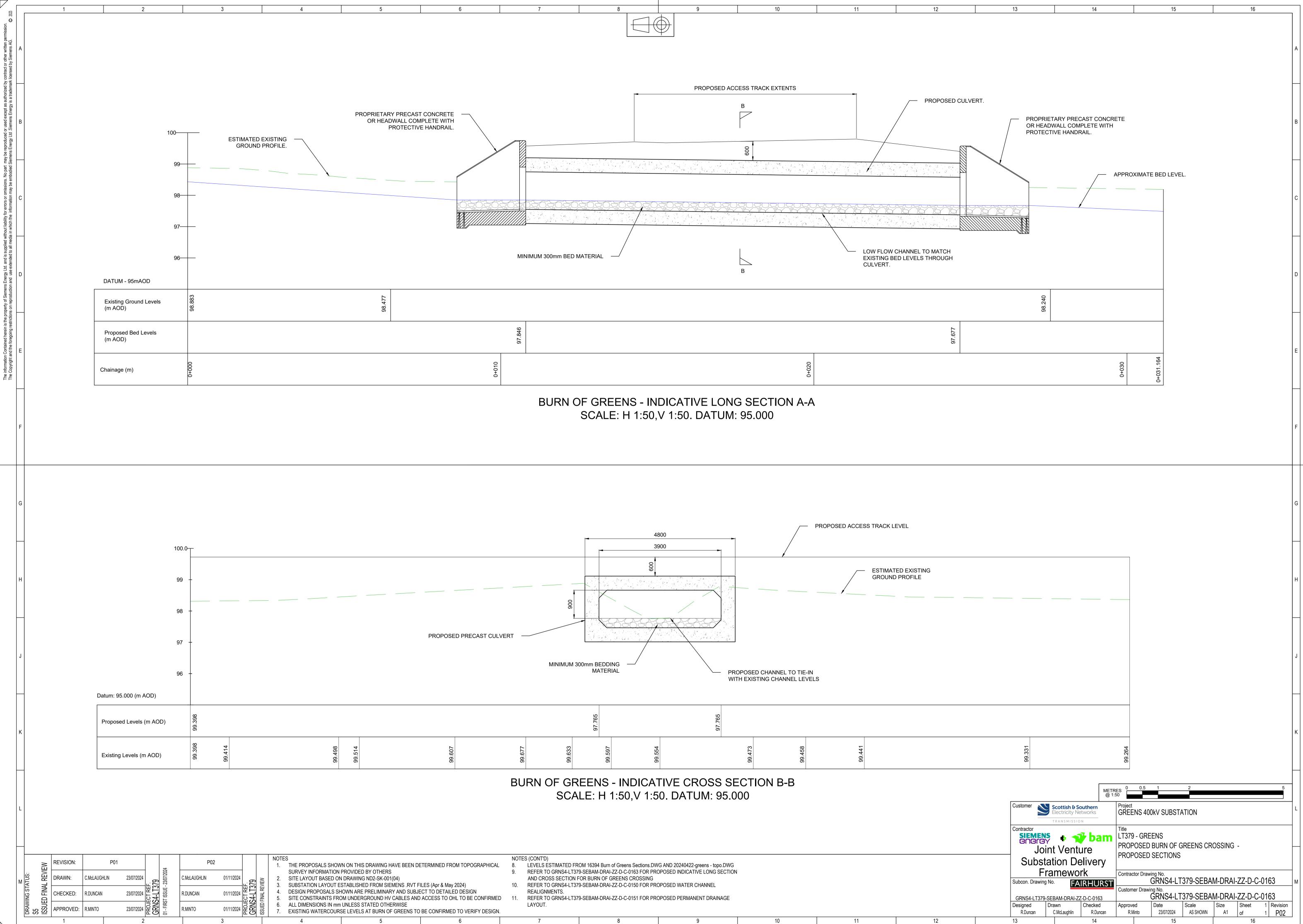
7

8

LEGEND:

				MAINTE	NANCE / CLEA	NING					
	190 91.552			NONE IE	DENTIFIED AT	THIS DESIGI	N PHASE			к	
	5			DECOM	VISSIONING / D	EMOLITION	1				
1				NONE ID	ENTIFIED AT	THIS DESIGI	N PHASE				
				l'	t is assumed that all w working, where a						1
			METR @ 1:2	ES 0 2 50	5	10			25		
	Customer	Scottish & So Electricity Ne	outhern tworks	Project GREENS	400kV SUBSTA	TION				L	
		Τ R A N S M I S S I O	Ν								
	Contractor	NS 🖬 🕌	2 ham	Title I T379 - GI	REENS 400kV	SUBSTATIC	N				
50	SIEME		bam		RING DRAWIN						
	J J	oint Ventu	lre	-	ED SOUTH WA	-	E CROS	S SECTIO	ONS		
	Subs	station De	livery	& DETAILS				0 OLON	5110		
		⁻ ramewo	.	Contractor Dr	-					-	
	Subcon. Draw		IRHURST		GRNS4-LT	379-SEBA	M-DRAI	-ZZ-D-C	-0160	М	Í
	GRNS4-LT3	79-SEBAM-DRAI-ZZ		Customer Dra	awing No. GRNS4-LT	379-SEBA	M-DRAI	-ZZ-D-C	-0160		
	Designed	Drawn	Checked	Approved	Date	Scale	Size	Sheet	1 Revision	1	
	A.Peters	C.McLaughlin	R.Duncan	R.Minto	21/08/2024	1:250	A1	of	1 P02		
	13		14		15			16			


CONSTRUCTION


SAFETY, HEALTH AND

ENVIRONMENTAL INFORMATION

In addition to the hazards/risks normally associated with the types of work detailed on this drawing, note the following :

UNKNOWN SERVICES - EXISTING WATER SUPPLY NETWORK

	M	REVISION:		P01			P02			NOTE		'N ON THIS DRAWING HAVE BEEN DI	ETERMINED FROM TOPOGRAPHICAL	
М	atus: L Revie	DRAWN:	C.McLAUGH	ILIN 23/07/2024	F. 79	23/07/2024	C.McLAUGHLIN	01/11/2024	VIEW	2.		PROVIDED BY OTHERS I DRAWING ND2-SK-001(04) STABLISHED FROM SIEMENS .RVT F	II ES (Apr & May 2024)	
	ട 📃	CHECKED:	R.DUNCAN	23/07/2024	ECT REI S4-LT3	ST ISSUE -	R.DUNCAN	01/11/2024	FINAL REV	4. 5.	DESIGN PROPOSALS SH SITE CONSTRAINTS FRO	IOWN ARE PRELIMINARY AND SUBJI DM UNDERGROUND HV CABLES ANE	ECT TO DETAILED DESIGN	D
	DRAWING S5 ISSUED F	APPROVED:	R.MINTO	23/07/2024	GRN	01 - FIRS	R.MINTO	01/11/2024	ISSUED	6. 7.		UNLESS STATED OTHERWISE SE LEVELS AT BURN OF GREENS TO	BE CONFIRMED TO VERIFY DESIGN	١.
		1		0				2			4	F	C	1

Appendix 8 Temporary Drainage Calculations

TEMPORARY SETTLING POND SIZING

This is a step-by-step procedure to provide the size required for settling provided sediment pollution. The information provided below is to be used to provide a proposed volume and or area required for the settlement of solids. All information gathered to produce sizing is assumed. Temporary sites <25Ha an assumed 1 in 10 year storm event have been reasonably selected for calculations. Any storm event greater than 1 in 10 is out of our control, overflow routes will need to be considered by contractors on a site-to-site basis.

Catchment Area is to be esstablished, what is the extent of the soil stripping required on site?

job number	156918
Site name	ASTI Greens

1 catchment review

check

2

Green field run off rate $\rm Q_{BAR}{=}~0.00108~x~(Area)^{0.89}~x~(SAAR)^{1.17}~x~(SOIL)^{2.17}$

	In	put	
Catchment Area	На	SAAR (mm) (from figure 18.1)	SPR (confirm from HR Wallingfords)
1/2 Platform & Area 1	11.66	840	0.3

L		Calculations		
	Greenfield runoff rates (m ³ /s)	Greenfield runoff rates (I/s)	10-year return rate (l/s)	10-year Greenfield runoff rates (m ³ /hr)
	0.072	71.706	101.823	366.564

Check Runoff rates with HR wallingford

https://www.uksuds.com/tools/greenfield-runoff-rate-estimation

Correct/ Update any assumptions in the table above with HR Wallingford results, Print off any HR Wallingford reports used and save in the file for reference.

Summary table		
Rainfall Zone	Annual Rainfall can be estimated from Figure 18.1 or Known site-specific valuse can be used. The site-specific annual average rainfall is known to be around 1062mm (HR Wallingford/ MicroDrainage)	840
Soil Type	Soils are divided into the five classes shown in Table 18.3, (Confirm with HR Wallingford) The soil is Clayey and impermiable. It was decided that the runoff potential is "very high"	2
Peak Flow per hectare	Flood flows should be estimated from table 18.2. see table 18.2 to the right	2.8
Mean Annual Flood	Multiply this flood flow in liters/second/hectare by the catchment area. The catchmentarea here is 0.065km ² . Mean annual flood for the catchment = 8.4U/s/ha x 6.5ha	32.6
10-year return period flood	The mean annual flood can be multiplied by a factor for range of return periods (table 18.4). ie a site peak flow for a 10 year return period = 32.6×1.48 .	48.3

CIRIA C648 Control of water pollution from linear construction projects.pdf

Table 18.5 Regional factors for scaling mean annual flood

Link to CIRIA C648 Guidance:

Region	Return period (years)								
Region	5	10	25	50					
Scottish Highlands	1.20	1.45	1.81	2.12					
Lowland Scotland	1.11	1.42	1.81	2.17					
North East England	1.25	1.45	1.70	1.90					
North West England	1.19	1.38	1.64	1.85					
Midlands (Severn-Trent area)	1.23	1.49	1.87	2.20					
Lincolnshire, Norfolk	1.29	1.65	2.25	2.83					
Southern (inc London and parts of Suffolk, Kent)	1.28	1.62	2.14	2.62					
South West England	1.23	1.49	1.84	2.12					
Wales	1.21	1.42	1.71	1.94					

Table 18.2 Mean annual flood peak flow for catchments < 50 ha (litres/second/hectare)

Soil	Annual rainfall (mm)												
type	< 600	600-800	800-1200	1200-1600	1600-3200	> 3200							
1	0.3	0.4	0.6	0.9	1.7	2.4							
2	1.4	1.8	2.8	4.1	7.7	10.8							
3	2.6	3.4	5.2	7.7	14.4	20.1							
4	3.3	4.4	6.7	9.9	18.6	26.0							
5	4.2	5.5	8.4	12.4	23.3	32.7							

Table	18.3	Soil	classes
-------	------	------	---------

General soil description	Runoff potential	Soil class
Well-drained, sandy, loamy or earthy peat soils	Very low	1
Very permeable soils (eg gravel, sand with shallow groundwater or rock	Low	2
Very fine sands, silts and clays. Permeable soils with shallow groundwater in low-lying areas	Moderate	3
Clayey or loamy soils	High	4
Wet uplands, shallow, rocky soils on steep slopes, peats with impermeable layers at shallow depth	Very high	5

Return period (years)	5	10	25	50	
Multiplier	1.22	1.48	1.88	2.22	

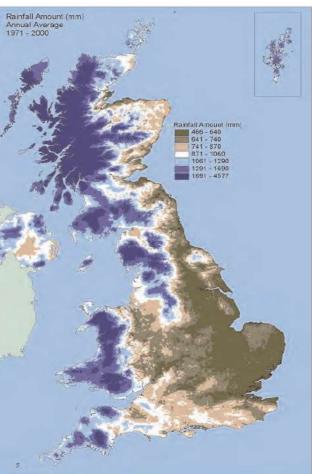


Figure 18.1 Rainfall amount annual average (mm) 1971–2000 (courtesy Met Office)

3. Sizing

3.1 Retention time for settlement

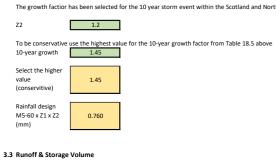
Use the drop down to select the proposed pond depth and Soil type

retention time selec	tion table			
Tank/ Pond Depth	Solid type	m/hr*1	Retention time (hr)	Retention time (days)
1	Fine Silt	0.0720	14	1

Solid type	mm/sec	m/hr*1		Proposed Typical pond/ tank depth (m)
Fine Clay	0.001	0.0036		0.5
Fine Silt	0.02	0.072		1
Medium silt	0.05	0.18		1.5
Course Sand	30	108		2
Flocculated Silt	10	36		2.5

	Retention time (settling velocity)										
depth	Fine clay (0.001 mm/s)	Fine silt (0.02 mm/s)	Medium silt (0.05 mm/s)	Coarse sand (30 mm/s)	Flocculated silt (10 mm/s)						
0.5 m	6 days	7 h	3 h	16 s	50 s						
1 m	11 days	14 h	5.5 h	33 s	2 min						
2 m	23 days	1 day	11 h	1 min	3 min						

3.2 Total Rainfall depth


It has been assumed the total depth of rainfall comes from factoring the 5year return event - 60minute storm ratio 'r' (M5-60) estimated rainfall has been taken on approximate location in figure 3 to the right.

It has been assumed the peak storm event is 10hrs, the duration factor has been taken from the Z1 table

2.62 Z1

The growth factior has been selected for the 10 year storm event within the Scotland and Northern Ireland region

Ciria C648 Provides a "crude estimation" to provide the volume of runoff

Runoff Volume = site area x rainfall total

3.4 Check

It is assumed that there will be some permability C648 indicates a factor of 0.4-0.75 is used. due to the level of Clay and the site visit a permeability value of 0.8 is used for low permeability

Runoff Volume = Site area x Rainfall total x permability

To allow the sizing of the settlement pond the outlet flow is required based on the time required for the suspended solids. As the Pond is assumed to be 1m deep the runff volume can be considered as an area m²

the discharge rate for the settlement pond Q (m^3/hr) = Settlement time x Runoff Volume =

Volumes can be checked through HR Wallingfords SuDS Tool

	Converted to liters/
	second
n³/hr	1.7718536

surface-water-storage-volume-estimation

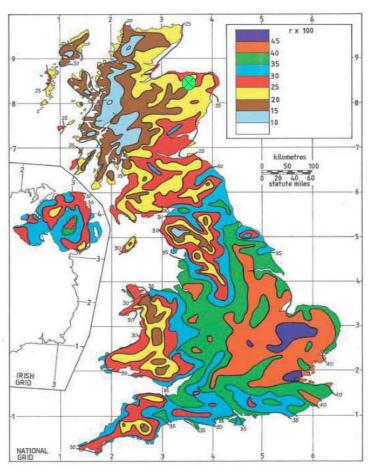
88.59268 m³

70.874144 m³

6.378672

Following the review of CIRIA C648 guidance when Clay is a potential pollutant to the water environment the guidance indicates the flocculants will be required. See extracts on the left.

	Rainfall duration (D)												
	Minute	s (min)			Hours (Hours (h)							
Ratio (r)	5	10	15	30	1	2	4	6	10	24			
0.12	0.22	0.34	0.45	0.67	1.00	1.48	2.17	2.75	3.70	6.00			
0.15	0.25	0.38	0.48	0.69	1.00	1.42	2.02	2.46	3.23	4.90			
0.18	0.27	0.41	0.51	0.71	1.00	1.36	1.86	2.25	2.86	4.30			
0.21	0.29	0.43	0.54	0.73	1.00	1.33	1.77	2.12	2.62	3.60			
0.24	0.31	0.46	0.56	0.75	1.00	1.30	1,71	2.00	2.40	3.35			
0.27	0.33	0.48	0.58	0.76	1.00	1.27	1.64	1.88	2.24	3.10			
0.30	0.34	0.49	0.59	0.77	1.00	1.25	1.57	1.78	2.12	2.84			
0.33	0.35	0.50	0.61	0.78	1.00	1.23	1.53	1.73	2.04	2.60			
0.36	0.36	0.51	0.62	0.79	1.00	1.22	1.48	1.67	1.90	2.42			
0.39	0.37	0.52	0.63	0.80	1.00	1.21	1.46	1.62	1.82	2.28			
0.42	0.38	0.53	0.64	0.81	1.00	1.20	1.42	1.57	1.74	2.16			
0.45	0.39	0.54	0.65	0.82	1.00	1.19	1.38	1.51	1.68	2.03			


	M10 growth factor 2	2	M100 growth fact	or Z2	
M5 rainfall (mm)	England and Wales	Scotland and Northern Ireland	England and Wales	Scotland and Northern Ireland	
5	1.20	1.18	1.84	1.91	
10	1.22	1.19	1.91	1.97	
15	1.23	1.19	1.95	1.97	
20	1.24	1.20	2.00	1.97	
25	1.24	1.19	2.03	1.93	
30	1.24	1.18	2.01	1.89	
40	1.22	1.18	1.97	1.85	
50	1.21	1.18	1.94	1.82	
75	1.19	1.17	1.90	1.78	
100	1.17	1.16	1.81	1.72	

Sizing settlement facilities

Suspended solids will settle out only when the water is still. Usually it is necessary to Suspended solids will settle out only when the water is still. Usually it is necessary to retain the water in the settlement tank or pond for several hours to allow the suspended solids to settle out. Retention time depends on the particle size, disturbance of the water, depth of water, temperature and particle density. Although it can be calculated (Masters-Williams *et al.*, 2001), the particle size and density data are not usually readily available. A rule of thumb indicates that a retention time of 2–3 hours is

usually readily available. A rule of thumb indicates that a retention time of 2–3 nours is adequate. However, finer particulate matter may require several days or more and therefore larger settlement facilities. Particles less than 2 mm (eg days, chalk, coal shale) may never settle out and will require addition of a flocculant [see Section 19.2.6]. In ideal conditions retention time is a function of settlement velocity and depth (Masters-Williams et al. 2001):

Settlement facilities are best utilised as part of a comprehensive set of control methods. If the suspended solids are particularly fine, or the volume of water very high, no size of lagoon or conventional type of treatment will work. In this case, or if there is no space for alternative suitable treatment, specialist treatment can be used in the form of flocculants or a dynamic separator (see also Section 19.2.6).

Or the MicroDrainage source control can provide a quick estimation

FAIRHURST

*1 Convert mm/s to m/hr by a factor of 3.6

Figure 3: Ratio of 60-min to 2-day rainfall duration of a 5-year return period⁽¹⁾ (image @ Department for Environment, Food & Rural Affairs)

							Page 1
225 Bath Street							
Glasgow							
G2 4GZ							Micco
Date 04/07/2024 22	:36		Design	ed by a	netera		
File 1. 0.5 PLATFO			Checke	-	PCCCID		Drainage
	RM AND ARE				1 2020	1 0	
Innovyze			Source	Contro	1 2020	.1.3	
	6 5		c	1.0			
Sur	<u>mmary of R</u>	esult	<u>s ior</u>	10 year	<u>Retur</u>	<u>n Period</u>	
Critical sto:	rm may not b	e iden	tified,	please	run lonc	er storm dura	tions.
	-			-	-		
	Storm Event	Max Level	Max Depth	Max Control	Max	Status	
	Evenc	(m)	(m)	(1/s)	(m ³)		
1.5					011 0		
	min Summer				911.8 1268.9	ок ок	
) min Summer				1703.6	0 K	
	min Summer				2153.2	ОК	
	min Summer				2476.7	ОК	
	min Summer				2736.3	0 K	
	min Summer				3143.8	ΟK	
	min Summer				3463.5	ОК	
600	min Summer	99.60	5 0.805	2.0	3727.8	O K	
720	min Summer	99.64	9 0.849	2.0	3954.0	O K	
960	min Summer	99.72	3 0.923	2.0	4328.3	Flood Risk	
1440	min Summer	99.83	6 1.036	2.0	4915.2	Flood Risk	
	min Winter				1021.8	0 K	
	min Winter				1422.0	O K	
	min Winter				1909.2	O K	
	min Winter				2413.3	O K	
	min Winter				2776.3	O K	
	min Winter				3067.8	O K	
	min Winter				3525.7	O K	
) min Winter	99.03	0.030	2.0	3885.5	ОК	
480							
480	0 to 1 m	5-			- h	minus Desk	
480	Storm					Time-Peak	
480	Storm Event		/hr) Vo		scharge olume (m³)	Time-Peak (mins)	
	Event	(mm,	/hr) Vo (lume V m³)	olume (m³)	(mins)	
	Event 15 min Summe	(mm) r 42	/hr) Vo (lume V m ³) 0.0	olume (m ³) 170.3	(mins) 75	
	Event 15 min Summe 30 min Summe	(mm, r 42 r 29	/hr) Vo (.000 .200	lume V m ³) 0.0 0.0	olume (m ³) 170.3 169.9	(mins) 75 89	
	Event 15 min Summe 30 min Summe 60 min Summe	(mm, r 42 r 29 r 19	/hr) Vo (.000 .200 .600	lume V m ³) 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7	(mins) 75 89 120	
1:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe	(mm, r 42 r 29 r 19 r 12	/hr) Vo (.000 .200 .600 .400	lume V m ³) 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7	(mins) 75 89 120 178	
11	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe	(mm, r 42 r 29 r 19 r 12 r 12	/hr) Vo (.000 .200 .600 .400 .521	lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2	(mins) 75 89 120 178 238	
1: 1: 1: 2:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 40 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7	/hr) Vo (.000 .200 .600 .400 .521 .900	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0	(mins) 75 89 120 178 238 298	
1: 1: 1: 2: 3:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 40 min Summe 60 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 7 r 6	/hr) Vo (.000 .200 .600 .400 .521 .900 .067	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9	(mins) 75 89 120 178 238 298 418	
1: 1: 2: 3: 4:	Event 15 min Summe 30 min Summe 60 min Summe 80 min Summe 40 min Summe 60 min Summe	(nm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5	/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0	(mins) 75 89 120 178 238 298 418 536	
1: 1: 1: 2: 3: 4: 6	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 40 min Summe 60 min Summe 80 min Summe 00 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4	/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025 .337	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4	(mins) 75 89 120 178 238 298 418 536 656	
1: 1: 2: 3: 4: 6: 7:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 60 min Summe 80 min Summe 80 min Summe 90 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 7 r 6 r 5 r 4 r 3	/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025 .337 .842	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8	(mins) 75 89 120 178 238 298 418 536 656 776	
1: 1: 2: 3: 4: 6: 7: 9:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 40 min Summe 60 min Summe 80 min Summe 90 min Summe 90 min Summe 90 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3	/hr) Vo (.000 .200 .600 .521 .900 .067 .025 .337 .842 .166	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2	(mins) 75 89 120 178 238 298 418 536 656 776 1016	
1: 1: 2: 3: 4: 6: 7: 9: 14:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 60 min Summe 80 min Summe 90 min Summe 90 min Summe 90 min Summe 90 min Summe 90 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 2	/hr) Vo (.000 .200 .600 .521 .900 .067 .025 .337 .842 .166 .396	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500	
1: 1: 2: 3: 4: 6: 7: 9: 14	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 40 min Summe 60 min Summe 60 min Summe 20 min Summe 20 min Summe 40 min Summe 40 min Summe 40 min Summe 50 min Summe 40 min Summe 40 min Summe	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 3 r 2 r 42	/hr) Vo (.000 .200 .600 .521 .900 .067 .025 .337 .842 .166 .396 .000	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75	
1: 1: 2: 3: 4: 6: 7: 9: 14	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 60 min Summe 80 min Summe 90 min Su	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 3 r 2 r 42 r 29	/hr) Vo (.000 .200 .600 .521 .900 .067 .025 .337 .842 .166 .396 .000 .200	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5 170.1	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75 89	
1: 1: 2: 3: 4: 6: 7: 9: 14:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 60 min Summe 60 min Summe 20 min Su	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 3 r 2 r 42 r 42 r 29 r 19	<pre>/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025 .337 .842 .166 .396 .000 .200 .600</pre>	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5 170.1 341.9	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75 89 118	
1: 1: 2: 3: 4: 6: 7: 9: 14: 1:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 40 min Summe 60 min Summe 20 min Summe 20 min Summe 40 min Summe 40 min Summe 50 min Summe 40 min Summe 40 min Summe 40 min Summe 50 min Winte 50 min Winte 50 min Winte 50 min Winte 50 min Winte	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 3 r 2 r 42 r 42 r 29 r 19 r 12	/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025 .337 .842 .166 .396 .000 .200 .600 .400	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5 170.1 341.9 340.0	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75 89 118 176	
1: 1: 2: 3: 4: 6: 7: 9: 14: 1: 1:	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 40 min Summe 60 min Summe 60 min Summe 20 min Summe 60 min Summe 15 min Winte 30 min Winte 30 min Winte 30 min Winte 30 min Winte 30 min Winte	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 3 r 2 r 42 r 42 r 29 r 19 r 12 r 12 r 9 r 12	/hr) Vo (.000 .200 .600 .521 .900 .067 .025 .337 .842 .166 .396 .000 .200 .600 .400 .521	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5 170.1 341.9 340.0 338.6	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75 89 118 176 236	
1: 1: 2: 3: 4: 6: 7: 9: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 40 min Summe 60 min Summe 20 min Summe 20 min Summe 40 min Summe 40 min Summe 50 min Summe 40 min Summe 40 min Summe 40 min Summe 50 min Winte 50 min Winte 50 min Winte 50 min Winte 50 min Winte	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 2 r 42 r 42 r 29 r 19 r 12 r 12 r 9 r 7 r 7 r 7 r 7 r 7 r 7 r 7 r 7 r 7 r 7	/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025 .337 .842 .166 .396 .000 .200 .600 .400 .521 .900	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5 170.1 341.9 340.0	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75 89 118 176	
1: 1: 2: 3: 4: 6: 7: 9: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14	Event 15 min Summe 30 min Summe 60 min Summe 20 min Summe 80 min Summe 40 min Summe 60 min Summe 60 min Summe 20 min Summe 60 min Summe 15 min Winte 30 min Winte 30 min Winte 40 min Winte 40 min Winte 40 min Winte 40 min Winte	(mm, r 42 r 29 r 19 r 12 r 9 r 7 r 6 r 5 r 4 r 3 r 3 r 2 r 42 r 29 r 19 r 12 r 12 r 12 r 9 r 7 r 7 r 6 r 7 r 6 r 7 r 7 r 7 r 7 r 7 r 7 r 7 r 7 r 7 r 7	/hr) Vo (.000 .200 .600 .400 .521 .900 .067 .025 .337 .842 .166 .396 .000 .200 .600 .400 .521 .900	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	olume (m ³) 170.3 169.9 341.7 339.7 338.2 337.0 334.9 333.0 331.4 329.8 309.2 113.2 170.5 170.1 341.9 340.0 338.6 337.4	(mins) 75 89 120 178 238 298 418 536 656 776 1016 1500 75 89 118 176 236 294	

						ruge z
225 Bath Stree	t					
Glasgow						
G2 4GZ						— Micro
Date 04/07/202	4 22:36	Des	igned b	y apeters		
	ATFORM AND ARE.		cked by			Drainag
				trol 2020	1 0	
Innovyze		5001		101 2020	.1.3	
	_					
	<u>Summary of Re</u>	sults f	<u>or 10 y</u>	<u>ear Retur</u>	<u>n Period</u>	
	Storm		lax Ma		Status	
	Event			rol Volume		
		(m) (m) (1/	's) (m³)		
	600 min Winter	99.694 0.	894	2.0 4183.1	ОК	
	720 min Winter	99.745 0.	945	2.0 4442.5	Flood Risk	
	960 min Winter	99.830 1.	030	2.0 4885.2	Flood Risk	
	1440 min Winter	99.953 1.	153	2.0 5538.7	Flood Risk	
	~ .	- ·		Die 1	mine p 1	
	Storm		Flooded Volume	Discharge Volume	(mins)	
	Event	(1111/112)	(m ³)	(m ³)	(mins)	
			((
	600 min Winter	4.337	0.0	331.9		
	720 min Winter	3.842	0.0			
	960 min Winter	3.166	0.0			
	1440 min Winter	2.396	0.0	93.1	1500	
		©1982-20				

Page 2

Fairhurst

Fairhurst								Page 3
225 Bath Street								
Glasgow								
G2 4GZ								_ Micro
Date 04/07/2024 22:36]	Des	signed	by a	peters	5		
File 1. 0.5 PLATFORM AND ARE	Drainago							
Innovyze		Sou	urce C	ontro	1 2020	0.1.3		
	Rai	nfa	all De	etails	3			
Rainfall M	odel	L					FEH	
Return Period (ye							10	
FEH Rainfall Ver Site Loca			וסרסכ ח	0 0160	00 NT		2013	
Data			D J020.	00 0400	500 NJ	Catchr		
Summer St							Yes	
Winter St							Yes	
Cv (Sum Cv (Win							.750 .840	
Shortest Storm (m						0	15	
Longest Storm (m	ins))				-	1440	
Climate Chan	ge 💡	00					+0	
2	lim∈	еA	<u>rea D</u>	iagra	<u>m</u>			
To	otal	Ar	rea (ha) 11.6	60			
Time (mins) Area From: To: (ha)	Tim From		(mins) To:			(mins) To:	Area (ha)	
0 10 1.944 10 20 1.944		20 30		1.943 1.943			1.943 1.943	
'					1	00	21010	
1	<u>'ım∈</u>	е А	<u>irea D</u>	lagra	<u>m</u>			
Т	otal	1 A:	rea (ha	a) 0.00	00			
	Tin Fro		(mins) To:	Area (ha)				
		0	4	0.000				
©1	982	2-2	2020 I	nnovy	ze			

Fairhurst							Page 4		
225 Bath Str	reet								
Glasgow									
G2 4GZ							Micro		
Date 04/07/2024 22:36 D				Designed by apeters					
File 1. 0.5 PLATFORM AND ARE Checked by						Drainago			
Innovyze			Source	Control	2020.1.3				
			<u>Model De</u>	etails					
Storage is Online Cover Level (m) 100.000									
Tank or Pond Structure									
Invert Level (m) 98.800 Depth (m) Area (m ²) Depth (m) Area (m ²)									
Pump Outflow Control									
Invert Level (m) 98.800									
Depth (m) F	'low (l/s)	Depth (m) F	'low (l/s) I	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)		
0.100	2.0000	0.900	2.0000	1.700	0.0000				
0.200 0.300	2.0000 2.0000	1.000 1.100	0.0000	1.800 1.900					
0.300	2.0000	1.200	0.0000	2.000					
0.500	2.0000	1.300	0.0000	2.100					
0.600	2.0000	1.400	0.0000	2.200			0.0000		
0.700	2.0000	1.500	0.0000	2.300					
0.800	2.0000	1.600	0.0000	2.400	0.0000				
		©.	1982-2020	Innovyz	e				

Date: 24/10/2024

Above is the procedure that has been used to size the lagoons with settlement discharge rates sizing of the lagoons have been set using the 1440 min (1day) volume below is a summary of the proposed lagoons

Laydown Catchment	Area (Ha)	Discharge Rate (I/s)	Lagoon Volume provided (m3)
1. 1/2 Platform & Area 1	11.66	2	5600
2. Area 2	1.5	0.23	800
3. Area 3, 4 & 5	5.09	0.8	2800
4. 1/2 Platform, Area 6 and Welfare/office	15.23	2.32	7300
5. Area 7	1.7	0.25	800
6. OHL Platform	2.06	0.3	1000